Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(1): 934-947, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275674

RESUMO

The present study investigated the association of genetic predisposition for white matter hyperintensities (WMHs) with incident amnestic mild cognitive impairment (aMCI) or Alzheimer's disease (AD), as well as whether such an association was influenced by age, sex, and cognitive reserve. Overall, 537 individuals without aMCI or dementia at baseline were included. Among them, 62 individuals developed aMCI/AD at follow up. Genetic propensity to WMH was estimated using a polygenic risk score for WMHs (PRS WMH). The association of PRS WMH with aMCI/AD incidence was examined using COX models. A higher PRS WMH was associated with a 47.2% higher aMCI/AD incidence (p = 0.015) in the fully adjusted model. Subgroup analyses showed significant results in the older age group, in which individuals with a higher genetic predisposition for WMHs had a 3.4-fold higher risk for developing aMCI/AD at follow up (p < 0.001), as well as in the lower cognitive reserve (CR, proxied by education years) group, in which individuals with a higher genetic predisposition for WMHs had an over 2-fold higher risk (p = 0.013). Genetic predisposition for WMHs was associated with aMCI/AD incidence, particularly in the group of participants with a low CR. Thus, CR might be a modifier in the relationship between genetic predisposition for WMHs and incident aMCI/AD.

2.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473892

RESUMO

The clinical features and pathophysiology of neuropsychiatric symptoms (NPSs) in dementia have been extensively studied. However, the genetic architecture and underlying neurobiological mechanisms of NPSs at preclinical stages of cognitive decline and Alzheimer's disease (AD) remain largely unknown. Mild behavioral impairment (MBI) represents an at-risk state for incident cognitive impairment and is defined by the emergence of persistent NPSs among non-demented individuals in later life. These NPSs include affective dysregulation, decreased motivation, impulse dyscontrol, abnormal perception and thought content, and social inappropriateness. Accumulating evidence has recently begun to shed more light on the genetic background of MBI, focusing on its potential association with genetic factors related to AD. The Apolipoprotein E (APOE) genotype and the MS4A locus have been associated with affective dysregulation, ZCWPW1 with social inappropriateness and psychosis, BIN1 and EPHA1 with psychosis, and NME8 with apathy. The association between MBI and polygenic risk scores (PRSs) in terms of AD dementia has been also explored. Potential implicated mechanisms include neuroinflammation, synaptic dysfunction, epigenetic modifications, oxidative stress responses, proteosomal impairment, and abnormal immune responses. In this review, we summarize and critically discuss the available evidence on the genetic background of MBI with an emphasis on AD, aiming to gain insights into the potential underlying neurobiological mechanisms, which till now remain largely unexplored. In addition, we propose future areas of research in this emerging field, with the aim to better understand the molecular pathophysiology of MBI and its genetic links with cognitive decline.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Transtornos Psicóticos , Humanos , Doença de Alzheimer/complicações , Disfunção Cognitiva/diagnóstico , Cognição , Transtornos Psicóticos/complicações , Testes Neuropsicológicos
3.
Medicina (Kaunas) ; 60(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38256375

RESUMO

Neuropsychiatric symptoms (NPS), including depression, anxiety, apathy, visual hallucinations, and impulse control disorders, are very common during the course of Parkinson's disease (PD), occurring even at the prodromal and premotor stages. Mild behavioral impairment (MBI) represents a recently described neurobehavioral syndrome, characterized by the emergence of persistent and impactful NPS in later life, reflecting arisk of dementia. Accumulating evidence suggests that MBI is highly prevalent in non-demented patients with PD, also being associated with an advanced disease stage, more severe motor deficits, as well as global and multiple-domain cognitive impairment. Neuroimaging studies have revealed that MBI in patients with PD may be related todistinct patterns of brain atrophy, altered neuronal connectivity, and distribution of dopamine transporter (DAT) depletion, shedding more light on its pathophysiological background. Genetic studies in PD patients have also shown that specific single-nucleotide polymorphisms (SNPs) may be associated with MBI, paving the way for future research in this field. In this review, we summarize and critically discuss the emerging evidence on the frequency, associated clinical and genetic factors, as well as neuroanatomical and neurophysiological correlates of MBI in PD, aiming to elucidate the underlying pathophysiology and its potential role as an early "marker" of cognitive decline, particularly in this population. In addition, we aim to identify research gaps, and propose novel relative areas of interest that could aid in our better understanding of the relationship of this newly defined diagnostic entity with PD.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Ansiedade , Transtornos de Ansiedade , Disfunção Cognitiva/genética , Polimorfismo de Nucleotídeo Único
4.
Cells ; 13(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38995015

RESUMO

The emergence of sustained neuropsychiatric symptoms (NPS) among non-demented individuals in later life, defined as mild behavioral impairment (MBI), is linked to a higher risk of cognitive decline. However, the underlying pathophysiological mechanisms remain largely unexplored. A growing body of evidence has shown that MBI is associated with alterations in structural and functional neuroimaging studies, higher genetic predisposition to clinical diagnosis of Alzheimer's disease (AD), as well as amyloid and tau pathology assessed in the blood, cerebrospinal fluid, positron-emission tomography (PET) imaging and neuropathological examination. These findings shed more light on the MBI-related potential neurobiological mechanisms, paving the way for the development of targeted pharmacological approaches. In this review, we aim to discuss the available clinical evidence on the role of amyloid and tau pathology in MBI and the potential underlying pathophysiological mechanisms. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, disruption of neurotrophic factors, such as the brain-derived neurotrophic factor (BDNF), abnormal neuroinflammatory responses including the kynurenine pathway, dysregulation of transforming growth factor beta (TGF-ß1), epigenetic alterations including micro-RNA (miR)-451a and miR-455-3p, synaptic dysfunction, imbalance in neurotransmitters including acetylcholine, dopamine, serotonin, gamma-aminobutyric acid (GABA) and norepinephrine, as well as altered locus coeruleus (LC) integrity are some of the potential mechanisms connecting MBI with amyloid and tau pathology. The elucidation of the underlying neurobiology of MBI would facilitate the design and efficacy of relative clinical trials, especially towards amyloid- or tau-related pathways. In addition, we provide insights for future research into our deeper understanding of its underlying pathophysiology of MBI, and discuss relative therapeutic implications.


Assuntos
Proteínas tau , Humanos , Proteínas tau/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA