Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Manage ; 52(6): 1474-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24000111

RESUMO

Grazing management necessarily emphasizes the most spatially extensive vegetation assemblages, but landscapes are mosaics, often with more mesic vegetation types embedded within a matrix of drier vegetation. Our primary objective was to contrast effects of equine grazing on both subalpine vegetation structure and associated arthropods in a drier reed grass (Calamagrostis muiriana) dominated habitat versus a wetter, more productive sedge habitat (Carex utriculata). A second objective was to compare reed grass and sedge as habitats for fauna, irrespective of grazing. All work was done in Sequoia National Park (CA, USA), where detailed, long-term records of stock management were available. We sampled paired grazed and control wet meadows that contained both habitats. There were moderate negative effects of grazing on vegetation, and effects were greater in sedge than in reed grass. Conversely, negative grazing effects on arthropods, albeit limited, were greater in the drier reed grass, possibly due to microhabitat differences. The differing effects on plants and animals as a function of habitat emphasize the importance of considering both flora and fauna, as well as multiple habitat types, when making management decisions. Sedge supported twice the overall arthropod abundance of reed grass as well as greater diversity; hemipteran and dipteran taxa were particularly abundant in sedge. Given the greater grazing effects on sedge vegetation, greater habitat provision for terrestrial arthropods, and value as aquatic arthropod habitat, the wetter sedge assemblage is worthy of additional consideration by managers when planning for grazing and other aspects of land usage.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Herbivoria/fisiologia , Cavalos/fisiologia , Áreas Alagadas , Animais , Artrópodes/fisiologia , California , Carex (Planta)/crescimento & desenvolvimento , Carex (Planta)/parasitologia , Conservação dos Recursos Naturais/estatística & dados numéricos , Poaceae/crescimento & desenvolvimento , Poaceae/parasitologia , Dinâmica Populacional , Especificidade da Espécie
2.
PLoS One ; 15(10): e0227161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052936

RESUMO

Dispersal of whitebark pine (Pinus albicaulis Engelm.), a keystone species of many high-elevation ecosystems in western North America, depends on Clark's nutcracker (Nucifraga columbiana Wilson), a seed-caching bird with an affinity for whitebark seeds. To the extent that this dependence is mutual, declines in whitebark seed production could cause declines in nutcracker abundance. Whitebark pine is in decline across much of its range due to interacting stressors, including the non-native pathogen white pine blister rust (Cronartium ribicola J. C. Fisch.). We used avian point-count data and tree surveys from four national park units to investigate whether trends in whitebark pine can explain trends in Clark's nutcracker. Spatial trends were modeled using recent data from two parks, while temporal trends were modeled using longer time-series of nutcracker and whitebark data from two additional parks. To assess the potential dependence of nutcrackers on whitebark, we linked a model of nutcracker density (accounting for detection probability) with a model of whitebark trends, using a Bayesian framework to translate uncertainty in whitebark metrics to uncertainty in nutcracker density. In Mount Rainier National Park, temporal models showed dramatic declines in nutcracker density concurrent with significant increases in whitebark crown mortality and trees infected with white pine blister rust. However, nutcrackers did not trend with whitebark metrics in North Cascades National Park Service Complex. In spatial models of data from Yosemite National Park and Sequoia-Kings Canyon National Park, nutcracker density varied not only with local cover of whitebark but also with elevation and, in Sequoia-Kings Canyon, with cover of another species of white pine. Our results add support for the hypothesis that the mutualism between whitebark pine and Clark's nutcracker is vulnerable to disruption by blister rust, and our approach integrates data across monitoring programs to explore trends in species interactions.


Assuntos
Passeriformes/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Animais , Teorema de Bayes , América do Norte , Parques Recreativos , Densidade Demográfica , Dinâmica Populacional , Análise Espaço-Temporal , Simbiose
3.
PLoS One ; 8(1): e54109, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308297

RESUMO

Conclusions regarding disturbance effects in high elevation or high latitude ecosystems based solely on infrequent, long-term sampling may be misleading, because the long winters may erase severe, short-term impacts at the height of the abbreviated growing season. We separated a) long-term effects of pack stock grazing, manifested in early season prior to stock arrival, from b) additional pack stock grazing effects that might become apparent during annual stock grazing, by use of paired grazed and control wet meadows that we sampled at the beginning and end of subalpine growing seasons. Control meadows had been closed to grazing for at least two decades, and meadow pairs were distributed across Sequoia National Park, California, USA. The study was thus effectively a landscape-scale, long-term manipulation of wetland grazing. We sampled arthropods at these remote sites and collected data on associated vegetation structure. Litter cover and depth, percent bare ground, and soil strength had negative responses to grazing. In contrast, fauna showed little response to grazing, and there were overall negative effects for only three arthropod families. Mid-season and long-term results were generally congruent, and the only indications of lower faunal diversity on mid-season grazed wetlands were trends of lower abundance across morphospecies and lower diversity for canopy fauna across assemblage metrics. Treatment x Season interactions almost absent. Thus impacts on vegetation structure only minimally cascaded into the arthropod assemblage and were not greatly intensified during the annual growing season. Differences between years, which were likely a response to divergent snowfall patterns, were more important than differences between early and mid-season. Reliance on either vegetation or faunal metrics exclusively would have yielded different conclusions; using both flora and fauna served to provide a more integrative view of ecosystem response.


Assuntos
Artrópodes/fisiologia , Herbivoria , Áreas Alagadas , Altitude , Animais , Artrópodes/classificação , Biodiversidade , California , Equidae , Cavalos , Dinâmica Populacional , Estações do Ano , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA