Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioinformatics ; 28(3): 381-7, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22190691

RESUMO

MOTIVATION: Elementary modes (EMs) and minimal cut sets (MCSs) provide important techniques for metabolic network modeling. Whereas EMs describe minimal subnetworks that can function in steady state, MCSs are sets of reactions whose removal will disable certain network functions. Effective algorithms were developed for EM computation while calculation of MCSs is typically addressed by indirect methods requiring the computation of EMs as initial step. RESULTS: In this contribution, we provide a method that determines MCSs directly without calculating the EMs. We introduce a duality framework for metabolic networks where the enumeration of MCSs in the original network is reduced to identifying the EMs in a dual network. As a further extension, we propose a generalization of MCSs in metabolic networks by allowing the combination of inhomogeneous constraints on reaction rates. This framework provides a promising tool to open the concept of EMs and MCSs to a wider class of applications. CONTACT: utz-uwe.haus@math.ethz.ch; klamt@mpi-magdeburg.mpg.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Biologia Computacional/métodos , Escherichia coli/metabolismo , Redes e Vias Metabólicas
2.
Proteomics ; 12(15-16): 2433-44, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22696468

RESUMO

Changes in synaptic efficacy underlying learning and memory processes are assumed to be associated with alterations of the protein composition of synapses. Here, we performed a quantitative proteomic screen to monitor changes in the synaptic proteome of four brain areas (auditory cortex, frontal cortex, hippocampus striatum) during auditory learning. Mice were trained in a shuttle box GO/NO-GO paradigm to discriminate between rising and falling frequency modulated tones to avoid mild electric foot shock. Control-treated mice received corresponding numbers of either the tones or the foot shocks. Six hours and 24 h later, the composition of a fraction enriched in synaptic cytomatrix-associated proteins was compared to that obtained from naïve mice by quantitative mass spectrometry. In the synaptic protein fraction obtained from trained mice, the average percentage (±SEM) of downregulated proteins (59.9 ± 0.5%) exceeded that of upregulated proteins (23.5 ± 0.8%) in the brain regions studied. This effect was significantly smaller in foot shock (42.7 ± 0.6% down, 40.7 ± 1.0% up) and tone controls (43.9 ± 1.0% down, 39.7 ± 0.9% up). These data suggest that learning processes initially induce removal and/or degradation of proteins from presynaptic and postsynaptic cytoskeletal matrices before these structures can acquire a new, postlearning organisation. In silico analysis points to a general role of insulin-like signalling in this process.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Aprendizagem por Discriminação/fisiologia , Proteoma/metabolismo , Sinapses/metabolismo , Animais , Aprendizagem da Esquiva , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteômica
3.
PLoS Comput Biol ; 7(8): e1002121, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21829342

RESUMO

T cells orchestrate the adaptive immune response, making them targets for immunotherapy. Although immunosuppressive therapies prevent disease progression, they also leave patients susceptible to opportunistic infections. To identify novel drug targets, we established a logical model describing T-cell receptor (TCR) signaling. However, to have a model that is able to predict new therapeutic approaches, the current drug targets must be included. Therefore, as a next step we generated the interleukin-2 receptor (IL-2R) signaling network and developed a tool to merge logical models. For IL-2R signaling, we show that STAT activation is independent of both Src- and PI3-kinases, while ERK activation depends upon both kinases and additionally requires novel PKCs. In addition, our merged model correctly predicted TCR-induced STAT activation. The combined network also allows information transfer from one receptor to add detail to another, thereby predicting that LAT mediates JNK activation in IL-2R signaling. In summary, the merged model not only enables us to unravel potential cross-talk, but it also suggests new experimental designs and provides a critical step towards designing strategies to reprogram T cells.


Assuntos
Receptor Cross-Talk/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Interleucina-2/metabolismo , Linfócitos T/metabolismo , Células Cultivadas , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
4.
Sci Adv ; 8(4): eabl9236, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35080972

RESUMO

Identifying the boundary beyond which quantum machines provide a computational advantage over their classical counterparts is a crucial step in charting their usefulness. Gaussian boson sampling (GBS), in which photons are measured from a highly entangled Gaussian state, is a leading approach in pursuing quantum advantage. State-of-the-art GBS experiments that run in minutes would require 600 million years to simulate using the best preexisting classical algorithms. Here, we present faster classical GBS simulation methods, including speed and accuracy improvements to the calculation of loop hafnians. We test these on a ∼100,000-core supercomputer to emulate GBS experiments with up to 100 modes and up to 92 photons. This reduces the simulation time for state-of-the-art GBS experiments to several months, a nine-orders of magnitude improvement over previous estimates. Last, we introduce a distribution that is efficient to sample from classically and that passes a variety of GBS validation methods.

5.
J Comput Biol ; 15(3): 259-68, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18331197

RESUMO

Given a metabolic network in terms of its metabolites and reactions, our goal is to efficiently compute the minimal knock-out sets of reactions required to block a given behavior. We describe an algorithm that improves the computation of these knock-out sets when the elementary modes (minimal functional subsystems) of the network are given. We also describe an algorithm that computes both the knock-out sets and the elementary modes containing the blocked reactions directly from the description of the network and whose worst-case computational complexity is better than the algorithms currently in use for these problems. Computational results are included.


Assuntos
Biologia Computacional/métodos , Redes e Vias Metabólicas , Algoritmos
6.
PLoS Comput Biol ; 3(8): e163, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17722974

RESUMO

Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies) and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.


Assuntos
Modelos Imunológicos , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Simulação por Computador , Modelos Logísticos
8.
Front Biosci (Schol Ed) ; 5(1): 149-66, 2013 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-23277042

RESUMO

Logical models for cellular signaling networks are recently attracting wide interest: Their ability to integrate qualitative information at different biological levels, from receptor-ligand interactions to gene-regulatory networks, is becoming essential for understanding complex signaling behavior. We present an overview of Boolean modeling paradigms and discuss in detail an approach based on causal logical interactions that yields descriptive and predictive signaling network models. Our approach offers a mathematically well-defined concept, improving the efficiency of analytical tools to meet the demand of large-scale data sets, and can be extended into various directions to include timing information as well as multiple discrete values for components.


Assuntos
Modelos Biológicos , Transdução de Sinais , Redes Reguladoras de Genes , Ligantes , Receptores de Superfície Celular/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-22737123

RESUMO

Chemical synapses are highly specialized cell-cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ) organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration, and transduction of the transmitter signal. Both pre- and postsynaptic protein networks represent the molecular substrates for synaptic plasticity. Their function can be altered both by regulating their composition and by post-translational modification of their components. For a comprehensive understanding of synaptic networks the entire ensemble of synaptic proteins has to be considered. To support this, we established a comprehensive database for synaptic junction proteins (SynProt database) primarily based on proteomics data obtained from biochemical preparations of detergent-resistant synaptic junctions. The database currently contains 2,788 non-redundant entries of rat, mouse, and some human proteins, which mainly have been manually extracted from 12 proteomic studies and annotated for synaptic subcellular localization. Each dataset is completed with manually added information including protein classifiers as well as automatically retrieved and updated information from public databases (UniProt and PubMed). We intend that the database will be used to support modeling of synaptic protein networks and rational experimental design.

10.
J Comput Biol ; 16(5): 725-43, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19432541

RESUMO

We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.


Assuntos
Simulação por Computador , Modelos Biológicos , Transdução de Sinais , Algoritmos , Biologia Computacional , Matemática , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA