RESUMO
We have conducted an experimental and computational study of cyclooctatetraene-1,4/1,6-dimethanol (1,4 and 1,6) as a molecular balance with the goal in mind to determine the otherwise inaccessible hydrogen bonding energy (HBE) of the cyclic water dimer, which constitutes a transition state. The 1,4/1,6 folding equilibrium is governed by an intramolecular hydrogen bond in the folded 1,6-isomer, in which the OH groups adopt a cyclic planar geometry, akin to the structure of the cyclic water dimer transition state. We characterized hydrogen bonding in 1,6 and reference complexes utilizing SAPT2 + (3)δMP2/aug-cc-pVTZ and selected quantum theory of atoms in molecule descriptors at M06-2XD3(0)/ma-def2-TZVPP. Additionally, we computed HBEs at the DLPNO-CCSD(T)/aug-cc-pVQZ level of theory. We find that hydrogen bonding in 1,6 is very similar to the interaction in the Ci symmetric cyclic water dimer TS, both in magnitude and character. We experimentally determined the Gibbs free energy of the folding process (ΔGeq) in a variety of organic solvents via nuclear magnetic resonance spectroscopy measurements at room temperature. By combining experimentally obtained ΔGeq values with corrections derived from accurate computational methods, we provide estimates for the HBE of cyclic water dimers and the cyclic water dimer TS, as the most stable cyclic water dimer.
Assuntos
Teoria Quântica , Água , Ligação de Hidrogênio , Solventes/química , Termodinâmica , Água/químicaRESUMO
We present an experimental and computational study to investigate noncovalent interactions between silyl groups that are often employed as "innocent" protecting groups. We chose an extended cyclooctatetraene (COT)-based molecular balance comprising unfolded (1,4-disubstituted) and folded (1,6-disubstituted) valance bond isomers that typically display remote and close silyl group contacts, respectively. The thermodynamic equilibria were determined using nuclear magnetic resonance measurements. Additionally, we utilized Boltzmann weighted symmetry-adapted perturbation theory (SAPT) at the sSAPT0/aug-cc-pVDZ level of theory to dissect and quantify noncovalent interactions. Apart from the extremely bulky tris(trimethylsilyl)silyl "supersilyl" group, there is a preference for the folded 1,6-COT valence isomer, with London dispersion interactions being the main stabilizing factor. This makes silyl groups excellent dispersion energy donors, a finding that needs to be taken into account in synthesis planning.
RESUMO
We present an experimental and computational study of a cyclooctatetraene (COT)-based molecular balance disubstituted with commonly used silyl groups. Such groups often serve as protecting groups and are typically considered innocent bystanders. Our motivation here is to determine the actual steric effects of such groups by employing a molecular balance. While in the unfolded 1,4-valence isomer the silyl groups are far apart (dσ-σ ≥ 5.15 Å), the folded 1,6-isomer is affected greatly by noncovalent interactions due to close σ-σ contacts (dσ-σ ≤ 2.58 Å). In order to investigate the thermodynamic equilibrium between the 1,6- and 1,4-valence isomers, we employed temperature-dependent nuclear magnetic resonance measurements. Additionally, we assessed the nature of attractive and repulsive interactions in 1,6-disilyl-COT derivatives via a combination of local energy decomposition analysis (LED) and symmetry-adapted perturbation theory (SAPT) at the DLPNO-CCSD(T)/def2-TZVP and sSAPT0/aug-cc-pVDZ levels of theory. We identified London dispersion interactions as the main contributor to the molecular stability of the folded states, whereas Pauli exchange repulsion and a resulting internal strain favor the unfolded diastereomer.
Assuntos
Termodinâmica , IsomerismoRESUMO
We present an experimental and computational study on the conformers of N,N'-diphenylthiourea substituted with different dispersion energy donor (DED) groups. While the unfolded anti-anti conformer is the most relevant for thiourea catalysis, intramolecular noncovalent interactions counterintuitively favor the folded syn-syn conformer, as evident from a combination of low-temperature nuclear magnetic resonance measurements and computations. In order to quantify the noncovalent interactions, we utilized local energy decomposition analysis and symmetry-adapted perturbation theory at the DLPNO-CCSD(T)/def2-TZVPP and sSAPT0/6-311G(d,p) levels of theory. Additionally, we applied a double-mutant cycle to experimentally study the effects of bulky substituents on the equilibria. We determined London dispersion as the key interaction that shifts the equilibria towards the syn-syn conformers. This preference is likely a factor why such thiourea derivatives can be poor catalysts.
Assuntos
Tioureia , Londres , Conformação Molecular , TermodinâmicaRESUMO
We describe a Brønsted acid-catalysed cascade reaction consisting of a Wagner-Meerwein rearrangement and a subsequent intra- or intermolecular Friedel-Crafts reaction leading to adamantane-based heterocycles. In contrast to the reported W.-M. rearrangements, in this case an iminium moiety serves as the acceptor of a migrating nucleophilic alkyl group in a [1,2]-alkyl shift.
RESUMO
We have developed a synthesis of 1,2-substituted adamantane carboxylic acids and further bridged cycloalkanes (cage compounds) by palladium acetate-catalyzed C-H bond oxidation. Acetoxylation of cycloalkane framework was performed using picolylamide as a directing group. Modification of the substrate, ligand design and variation of reaction conditions enabled us to study the mechanism of acetoxylation of aliphatic compounds. Post-functionalization reactions and cleavage of the directing group were developed. For the first time the synthesis and characterization of a ß-C3 -tri-substituted adamantane derivatives was achieved.
RESUMO
Phenol moieties are key structural motifs in many areas of chemical research from polymers to pharmaceuticals. Herein, we report on the design and use of a structurally demanding cyclic peroxide (spiro[bicyclo[2.2.1]heptane-2,4'-[1,2]dioxolane]-3',5'-dione, P4) for the direct hydroxylation of aromatic substrates. The new peroxide benefits from high thermal stability and can be synthesized from readily available starting materials. The aromatic C-H oxidation using P4 exhibits generally good yields (up to 96%) and appreciable regioselectivities.
RESUMO
A newly developed enzyme immunoassay (EIA) for the detection of the tremorgenic indole-diterpene alkaloid paxilline (PAX) and closely related analogs was used to analyze ergot sclerotia collected from rye and barley fields. The mean EIA standard curve detection limit was 0.47 ± 0.14 ng/mL; relative cross-reactivity of toxin standard solutions was found for 11-hydroxy-paspaline (terpendole E, 1.1%) but not for lolitrem B or ergot alkaloids. Sclerotia from all fields were positive in the PAX-EIA at concentration levels of 620 ± 200 and 160 ± 37 µg/kg in ergot of rye and 130 ± 47 µg/kg in ergot of barley. Confirmatory analyses of sclerotia by liquid chromatography-tandem mass spectrometric detection identified PAX and its analog 13-desoxypaxilline. To the best of our knowledge, this is the first report on the natural occurrence of tremorgenic indole-diterpene alkaloid mycotoxins in ergot sclerotia from rye and barley. Along with details on the analytical methodology developed in this study, particularly PAX-antibody production, the relevance and implications of these findings for food and feed safety are discussed. Presence or absence of elevated levels of tremorgenic mycotoxins, along with the ergot alkaloids, would help in explaining the difference between the two distinct manifestations of historic ergotism, the convulsive and the gangrenous form. Further method development for paxilline and other tremorgenic mycotoxins in cereals used for food and feed is a prerequisite for a comprehensive risk assessment, which seems to be necessary in light of the findings reported here. Paxilline in ergot of rye.
Assuntos
Hordeum/química , Indóis/análise , Micotoxinas/análise , Secale/química , Tremor/induzido quimicamente , Ração Animal/análise , Cromatografia Líquida/métodos , Contaminação de Alimentos , Técnicas Imunoenzimáticas , Indóis/toxicidade , Limite de Detecção , Micotoxinas/toxicidade , Espectrometria de Massas em Tandem/métodosRESUMO
Steric effects in chemistry are a consequence of the space required to accommodate the atoms and groups within a molecule, and are often thought to be dominated by repulsive forces arising from overlapping electron densities (Pauli repulsion). An appreciation of attractive interactions such as van der Waals forces (which include London dispersion forces) is necessary to understand chemical bonding and reactivity fully. This is evident from, for example, the strongly debated origin of the higher stability of branched alkanes relative to linear alkanes and the possibility of constructing hydrocarbons with extraordinarily long C-C single bonds through steric crowding. Although empirical bond distance/bond strength relationships have been established for C-C bonds (longer C-C bonds have smaller bond dissociation energies), these have no present theoretical basis. Nevertheless, these empirical considerations are fundamental to structural and energetic evaluations in chemistry, as summarized by Pauling as early as 1960 and confirmed more recently. Here we report the preparation of hydrocarbons with extremely long C-C bonds (up to 1.704 Å), the longest such bonds observed so far in alkanes. The prepared compounds are unexpectedly stable--noticeable decomposition occurs only above 200 °C. We prepared the alkanes by coupling nanometre-sized, diamond-like, highly rigid structures known as diamondoids. The extraordinary stability of the coupling products is due to overall attractive dispersion interactions between the intramolecular Hâ¢â¢â¢H contact surfaces, as is evident from density functional theory computations with and without inclusion of dispersion corrections.
RESUMO
The dilithio compound (E)-1-lithio-2-(o-lithiophenyl)-1-trimethylsilylethene (5) was synthesized from 2-trimethylsilylbenzo-[b]tellurophene (6) with lithium-6 and a detailed analysis of its 1 H, 6 Li, 13 C, and 29 Si NMR spectra showed 5 to form a dimer 52 in tetrahydrofuran and diethylether, while addition of tetramethylethylenediamine stabilizes a monomer 51 . A monomer-dimer equilibrium exists with K at 230 K = 1.25 and ΔG230o = -0.43 kJ mol-1 . Homonuclear 6 Li,6 Li coupling of 0.25 ± 0.07 Hz in the dimer was detected by a 1D-6 Li,6 Li INADEQUATE experiment, and scalar 6 Li,13 C coupling constants were obtained from 13 C satellites in the 6 Li spectrum, from 13 C multiplet simulation and 6 Li,13 C-HMQC spectra. In addition, structures and coupling constants of 51 and 52 were calculated by density functional theory (DFT) methods. It was found that the magnitude of the 6 Li,13 C spin-spin interactions shows an inverse correlation with the C-Li bond lengths. The intra-aggregate exchange in the dimer, caused by 180° rotation of one monomer unit within the solvent cage, was studied by 6 Li DNMR and line shape analysis and yielded ΔG298≠ = 60 ± 3 kJ mol-1 ; ΔH≠ = 84 ± 3 kJ mol-1 ; ΔS≠ = 80 ± 3 J mol-1 K-1 for this process. Copyright © 2015 John Wiley & Sons, Ltd.
RESUMO
Direct unequal C-H bond difunctionalization of phosphorylated diamantane was achieved in high yield from the corresponding phosphonates. Reduction of the functionalized phosphonates provides access to novel primary and secondary alkyl/aryl diamantane phosphines. The prepared primary diamantyl phosphines are quite air stable compared to their adamantyl and especially alkyl or aryl analogues. This finding is corroborated by comparing the singly occupied molecular orbital energy levels of the corresponding phosphine radical cations obtained by density functional theory computations.
RESUMO
The fusion of the sp(3) -hybridized parent diamondoid adamantane with the sp(2) -hybridized pyrene results in a hybrid structure with a very large dipole moment which arises from bending the pyrene moiety. Presented herein is the synthesis, study of the electronic and optical properties, as well as the dynamic behavior of this new hydrocarbon.
RESUMO
A new transition-metal-free mode for the catalytic reduction of carbon dioxide via bidentate interaction has been developed. In the presence of Li2[1,2-C6H4(BH3)2], CO2 can be selectively transformed to either methane or methanol, depending on the reducing agent. The bidentate nature of binding is supported by X-ray analysis of an intermediate analogue, which experiences special stabilization due to aromatic character in the bidentate interaction. Kinetic studies revealed a first-order reaction rate. The transformation can be conducted without any solvent.
RESUMO
The mucin MUC1 is a glycoprotein involved in fundamental biological processes, which can be found over-expressed and with a distinctly altered glycan pattern on epithelial tumor cells; thus it is a promising target structure in the quest for effective carbohydrate-based cancer vaccines and immunotherapeutics. Natural glycopeptide antigens indicate only a low immunogenicity and a T-cell independent immune response; however, this major drawback can be overcome by coupling of glycopeptide antigens multivalently to immunostimulating carrier platforms. In particular, gold nanoparticles are well suited as templates for the multivalent presentation of glycopeptide antigens, due to their remarkably high surface-to-volume ratio in combination with their high biostability. In this work the synthesis of novel MUC1-glycopeptide antigens and their coupling to gold nanoparticles of different sizes are presented. In addition, the development of a new dot-blot immunoassay to test the potential antigen-antibody binding is introduced.
Assuntos
Glicopeptídeos/química , Glicopeptídeos/síntese química , Coloide de Ouro/química , Mucina-1/química , Técnicas de Química Sintética , Glicopeptídeos/imunologia , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Imunoensaio , Mucina-1/imunologia , Técnicas de Microbalança de Cristal de QuartzoRESUMO
The storage of energy in a safe and environmentally benign way is one of the main challenges of today's society. Ammonia-borane (AB=NH3 BH3 ) has been proposed as a possible candidate for the chemical storage of hydrogen. However, the efficient release of hydrogen is still an active field of research. Herein, we present a metal-free bis(borane) Lewis acid catalyst that promotes the evolution of up to 2.5â equivalents of H2 per AB molecule. The catalyst can be reused multiple times without loss of activity. The moderate temperature of 60 °C allows for controlling the supply of H2 on demand simply by heating and cooling. Mechanistic studies give preliminary insights into the kinetics and mechanism of the catalytic reaction.
RESUMO
BACKGROUND: So-called cyathane type diterpenoids are produced as secondary metabolites by basidiomycetes. Based on their antibacterial, fungicidal, and cytotoxic properties, cyathane type terpenoids represent interesting target compounds in fungal biotechnology. RESULTS: An indirect competitive enzyme linked immunosorbent assay has been developed for detection of cyathane type diterpenoids. Rabbit polyclonal antibodies were raised against a mixture of striatal A and B conjugated to bovine serum albumin. The conditions for direct attachment of the hapten striatal B to a solid phase by passive adsorption were optimized. The cross reactivities of the striatals A, C and D, of the striatins A and B, and of the erinacines C and P to striatal B were determined. The validation study showed that the ELISA was precise and sensitive. The average IC50 of striatal B was 36.0 ng mL-1 with an inter-assay coefficient of variation (CV) of 13.2% (n = 5). Recoveries from striatal B spiked samples in the assay were in the range of 97.3 - 125.9%. A good correlation between the striatal B concentration measured by the ELISA and by HPLC-DAD (y = 1.1122× - 0.1585, R2 = 0.9942) was obtained from linear regression analysis. The suitability of the ELISA for detection of cyathane type diterpenoids in submerged cultures and fruiting bodies of H. erinaceus was studied. It showed cross reactivity with supernatants from submerged cultures and extracts thereof, but did not show cross reactivity with extracts from fruiting bodies. CONCLUSIONS: The developed method is appropriate for qualitative and quantitative detection of cyathane diterpenoids in complex mixtures. Due to its high sensitivity and specificity, it represents an ideal screening method for discovering new cyathane diterpenoids and new potential producers of them.
Assuntos
Basidiomycota/química , Cyathus/química , Diterpenos/análise , Ensaio de Imunoadsorção Enzimática/métodos , Animais , Basidiomycota/metabolismo , Cyathus/metabolismo , Diterpenos/metabolismo , Coelhos , Sensibilidade e EspecificidadeRESUMO
N-acetylneuraminic acid (Neu5Ac) represents the most common terminal carbohydrate residue in many mammalian glycoconjugates and is directly involved in a number of different physiological as well as pathological cellular processes. Endogenous sialic acids derive from the biosynthetic precursor molecule N-acetyl-D-mannosamine (ManNAc). Interestingly, N-acyl-analogues of D-mannosamine (ManN) can also be incorporated and converted into corresponding artificial sialic acids by eukaryotic cells. Within this study, we optimized a protocol for the chemical synthesis of various peracetylated ManN derivatives resulting in yields of approximately 100%. Correct molecular structures of the obtained products ManNAc, N-propanoyl-ManN (ManNProp) and N-butyl-ManN (ManNBut) were verified by GC-, ESI-MS- and NMR-analyses. By applying these substances to human umbilical vein endothelial cells (HUVECs), we could show that each derivative was metabolized to the corresponding N-acylneuraminic acid variant and subsequently incorporated into nascent glycoproteins. To investigate whether natural and/or artificial sialic acid precursors are able to modulate the angiogenic capacity of HUVECs, a spheroid assay was performed. By this means, an increase in total capillary length has been observed when cells incorporated N-butylneuraminic acid (Neu5But) into their glycoconjugates. In contrast, the natural precursor ManNAc inhibited the growth of capillaries. Thus, sialic acid precursors may represent useful agents to modulate blood vessel formation.
Assuntos
Indutores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Ácido N-Acetilneuramínico/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Indutores da Angiogênese/química , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Glicoconjugados/química , Glicoproteínas/metabolismo , Humanos , Espectrometria de Massas , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/químicaRESUMO
The metal-induced coupling of tertiary diamondoid bromides gave highly sterically congested hydrocarbon (hetero)dimers with exceptionally long central C-C bonds of up to 1.71 Å in 2-(1-diamantyl)[121]tetramantane. Yet, these dimers are thermally very stable even at temperatures above 200 °C, which is not in line with common C-C bond length versus bond strengths correlations. We suggest that the extraordinary stabilization arises from numerous intramolecular van der Waals attractions between the neighboring H-terminated diamond-like surfaces. The C-C bond rotational dynamics of 1-(1-adamantyl)diamantane, 1-(1-diamantyl)diamantane, 2-(1-adamantyl)triamantane, 2-(1-diamantyl)triamantane, and 2-(1-diamantyl)[121]tetramantane were studied through variable-temperature (1)H- and (13)C NMR spectroscopies. The shapes of the inward (endo) CH surfaces determine the dynamic behavior, changing the central C-C bond rotation barriers from 7 to 33 kcal mol(-1). We probe the ability of popular density functional theory (DFT) approaches (including BLYP, B3LYP, B98, B3LYP-Dn, B97D, B3PW91, BHandHLYP, B3P86, PBE1PBE, wB97XD, and M06-2X) with 6-31G(d,p) and cc-pVDZ basis sets to describe such an unusual bonding situation. Only functionals accounting for dispersion are able to reproduce the experimental geometries, while most DFT functionals are able to reproduce the experimental rotational barriers due to error cancellations. Computations on larger diamondoids reveal that the interplay between the shapes and the sizes of the CH surfaces may even allow the preparation of open-shell alkyl radical dimers (and possibly polymers) that are strongly held together exclusively by dispersion forces.
RESUMO
Determining the structure of reactive intermediates is the key to understanding reaction mechanisms. To access these structures, a method combining structural sensitivity and high time resolution is required. Here ultrafast polarization-dependent two-dimensional infrared (P2D-IR) spectroscopy is shown to be an excellent complement to commonly used methods such as one-dimensional IR and multidimensional NMR spectroscopy for investigating intermediates. P2D-IR spectroscopy allows structure determination by measuring the angles between vibrational transition dipole moments. The high time resolution makes P2D-IR spectroscopy an attractive method for structure determination in the presence of fast exchange and for short-lived intermediates. The ubiquity of vibrations in molecules ensures broad applicability of the method, particularly in cases in which NMR spectroscopy is challenging due to a low density of active nuclei. Here we illustrate the strengths of P2D-IR by determining the conformation of a Diels-Alder dienophile that carries the Evans auxiliary and its conformational change induced by the complexation with the Lewis acid SnCl(4), which is a catalyst for stereoselective Diels-Alder reactions. We show that P2D-IR in combination with DFT computations can discriminate between the various conformers of the free dienophile N-crotonyloxazolidinone that have been debated before, proving antiperiplanar orientation of the carbonyl groups and s-cis conformation of the crotonyl moiety. P2D-IR unequivocally identifies the coordination and conformation in the catalyst-substrate complex with SnCl(4), even in the presence of exchange that is fast on the NMR time scale. It resolves a chelate with the carbonyl orientation flipped to synperiplanar and s-cis crotonyl configuration as the main species. This work sets the stage for future studies of other catalyst-substrate complexes and intermediates using a combination of P2D-IR spectroscopy and DFT computations.
Assuntos
Ácidos de Lewis/química , Oxazolidinonas/química , Compostos de Estanho/química , Estrutura Molecular , Teoria Quântica , Espectrofotometria Infravermelho , EstereoisomerismoRESUMO
Terpenes may be converted by electrochemical oxidation to various oxidized products with appealing aroma properties. In this study, (R)-limonene was anodically oxidized in the presence of ethanol, and the resulting mixture exhibited a pleasing fruity, herbal, citrus-like, and resinous odor. The aroma-active compounds were purified by means of preparative high-performance liquid chromatography, and their structures were elucidated by means of gas chromatography (GC)-mass spectrometry and nuclear magnetic resonance spectroscopy. In addition, the odor of the isolated compounds was determined by means of GC-olfactometry. Seventeen compounds were isolated, and for only four of them, analytical data had been reported previously in the literature. Furthermore, only for two of the compounds, an odor description had been available in the literature.