Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35591204

RESUMO

In this study, different planar inductor topologies were studied to evaluate their characteristic parameters' variation range upon approaching Fe- and Cu-based shield plates. The use of such materials can differently alter the electrical properties of planar inductors such as the inductance, resonant frequency, resistance, and quality factor, which could be useful in multiple devices, particularly in inductive sensing and radio-frequency (or RF) applications. To reach an optimal design, five different square topologies, including spiral, tapered, non-spiral, meander, and fractal, were built on a printed circuit board (PCB) and assessed experimentally. At the working frequency of 1 MHz, the results showed a decrease in the inductance value when approaching a Cu-based plate and an increase with Fe-based plates. The higher variation range was noticeable for double-layer topologies, which was about 60% with the Cu-based plate. Beyond an intrinsic deflection frequency, the inductance value began to decrease when approaching the ferromagnetic plate because of the ferromagnetic resonance (FMR). It has been shown that the FMR frequency depends on the inductor topology and is larger for the double-layer spiral one. The Q-factor was decreasing for all topologies but was much faster when using ferromagnetic plates because of the FMR, which intensely increases the track resistance. The resonant frequency was increasing for all double-layer topologies and decreasing for single-layer ones, which was mainly due to the percentage change in the stray capacitance compared to the inductance variation. The concept of varying inductors by metal shielding plates has great potential in a wide range of nondestructive sensing and RF applications.

2.
Biosensors (Basel) ; 11(2)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670061

RESUMO

Paper substrates are promising for development of cost-effective and efficient point-of-care biosensors, essential for public healthcare and environmental diagnostics in emergency situations. Most paper-based biosensors rely on the natural capillarity of paper to perform qualitative or semi-quantitative colorimetric detections. To achieve quantification and better sensitivity, technologies combining paper-based substrates and electrical detection are being developed. In this work, we demonstrate the potential of electrical measurements by means of a simple, parallel-plate electrode setup towards the detection of whole-cell bacteria captured in nitrocellulose (NC) membranes. Unlike current electrical sensors, which are mostly integrated, this plug and play system has reusable electrodes and enables simple and fast bacterial detection through impedance measurements. The characterized NC membrane was subjected to (i) a biofunctionalization, (ii) different saline solutions modelling real water samples, and (iii) bacterial suspensions of different concentrations. Bacterial detection was achieved in low conductivity buffers through both resistive and capacitive changes in the sensed medium. To capture Bacillus thuringiensis, the model microorganism used in this work, the endolysin cell-wall binding domain (CBD) of Deep-Blue, a bacteriophage targeting this bacterium, was integrated into the membranes as a recognition bio-interface. This experimental proof-of-concept illustrates the electrical detection of 107 colony-forming units (CFU) mL-1 bacteria in low-salinity buffers within 5 min, using a very simple setup. This offers perspectives for affordable pathogen sensors that can easily be reconfigured for different bacteria. Water quality testing is a particularly interesting application since it requires frequent testing, especially in emergency situations.


Assuntos
Celulose/química , Monitoramento Ambiental/métodos , Microbiologia da Água , Poluição da Água/análise , Técnicas Biossensoriais , Impedância Elétrica , Eletrodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA