Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol Methods ; 475: 112348, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-28760670

RESUMO

The EuroFlow Consortium developed a fully standardized flow cytometric approach from instrument settings, through antibody panel, reagents and sample preparation protocols, to data acquisition and analysis. The Swiss Cytometry Society (SCS) promoted a study to evaluate the feasibility of using such standardized measurements of 8-color data across two different flow cytometry platforms - Becton Dickinson (BD) FACSCanto II and Beckman Coulter (BC) Navios, aiming at increasing reproducibility and inter-laboratory comparability of immunophenotypic data in clinical laboratories in Switzerland. The study was performed in two phases, i.e. a learning phase (round 1) and an analytical phase (rounds 2 and 3) consisting of a total of three rounds. Overall, 10 laboratories using BD FACSCanto II (n=6) or BC Navios (n=4) flow cytometers participated. Each laboratory measured peripheral blood samples from healthy donors stained with a uniform antibody panel of reagents - EuroFlow Lymphoid Screening Tube (LST) - applying the EuroFlow standardized protocols for instrument setup and sample preparation (www.EuroFlow.org). All data files were analyzed centrally and median fluorescence intensity (MedFI) values for individual markers on defined lymphocyte subsets were recorded; variability from reference MedFI values was assessed using performance scores. Data troubleshooting and discussion of the results with the participants followed after each round at SCS meetings. The results of the learning phase demonstrated that standardized instrument setup and data acquisition are feasible in routine clinical laboratories without previous experience with EuroFlow. During the analytical phase, highly comparable data were obtained at the different laboratories using either BD FACSCanto II or BC Navios. The coefficient of variation of MedFI for 7 of 11 markers performed repeatedly below 30%. In the last study round, 89% of participants scored over 90% MedFI values within the acceptance criteria (P-score), in line with the results of the EuroFlow quality assessment rounds performed by the EuroFlow expert laboratories(Kalina et al., 2015). Central analysis of data allowed identification of deviations from the standardized procedures and technical issues (e.g. failure to perform correct instrument setup and improper compensation). In summary, here we show that inter-laboratory cross-platform standardization of 8-color flow cytometric measurements in clinical laboratories is feasible and allows for fully comparable MedFI results across BD FACSCanto II and BC Navios instruments. However, adherence to standardized protocols is crucial. Thus, training of the laboratory personnel in the EuroFlow standardized procedures is highly recommended to prevent errors in instrument setup and sample preparation.


Assuntos
Citometria de Fluxo/instrumentação , Citometria de Fluxo/normas , Imunofenotipagem/instrumentação , Imunofenotipagem/normas , Serviços de Laboratório Clínico/normas , Estudos de Viabilidade , Humanos , Suíça
2.
Swiss Med Wkly ; 144: w13907, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24452390

RESUMO

Minimal residual disease (MRD) refers to the small number of malignant cells that remain after therapy when the patient is in remission and shows no symptoms or overt signs of disease. Current treatment protocols for haematological malignancies allow most patients to obtain some form of MRD state, but cure seldom follows and in most cases fatal relapses occur sooner or later, leaving a bitter impression of having won a battle yet lost the war. MRD detection and quantification are used for evaluation of treatment efficiency, patient risk stratification and long-term outcome prediction. Whereas multicolour flow cytometry (MCFC) and polymerase chain reaction (PCR) based methods constitute the two most commonly used techniques for MRD detection, next generation sequencing will certainly be widely employed in the future. As MRD reflects the nature of the malignant disease itself, including its sensitivity to the drug regimens applied, it constitutes the ideal method for surveillance and patient follow-up. The morphological examination of peripheral blood or bone marrow smears, although still an indispensable part of routine laboratory testing, is clearly insufficient for patient management, and clinicians should not ask themselves whether to look for MRD or not, but how and when.


Assuntos
Leucemia/diagnóstico , Linfoma/diagnóstico , Mieloma Múltiplo/diagnóstico , Vigilância da População/métodos , Biomarcadores Tumorais/análise , Citometria de Fluxo , Humanos , Leucemia/sangue , Linfoma/sangue , Mieloma Múltiplo/sangue , Neoplasia Residual , Reação em Cadeia da Polimerase
3.
Stem Cells Transl Med ; 1(3): 248-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23197784

RESUMO

Pluripotent stem cell-seeded cardiopatches hold promise for in situ regeneration of infarcted hearts. Here, we describe a novel cardiopatch based on bone morphogenetic protein 2-primed cardiac-committed mouse embryonic stem cells, embedded into biodegradable fibrin matrices and engrafted onto infarcted rat hearts. For in vivo tracking of the engrafted cardiac-committed cells, superparamagnetic iron oxide nanoparticles were magnetofected into the cells, thus enabling detection and functional evaluation by high-resolution magnetic resonance imaging. Six weeks after transplantation into infarcted rat hearts, both local (p < .04) and global (p < .015) heart function, as well as the left ventricular dilation (p < .0011), were significantly improved (p < .001) as compared with hearts receiving cardiopatches loaded with iron nanoparticles alone. Histological analysis revealed that the fibrin scaffolds had degraded over time and clusters of myocyte enhancer factor 2-positive cardiac-committed cells had colonized most of the infarcted myocardium, including the fibrotic area. De novo CD31-positive blood vessels were formed in the vicinity of the transplanted cardiopatch. Altogether, our data provide evidence that stem cell-based cardiopatches represent a promising therapeutic strategy to achieve efficient cell implantation and improved global and regional cardiac function after myocardial infarction.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Coração/fisiologia , Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Animais , Células-Tronco Embrionárias/fisiologia , Técnicas Imunoenzimáticas , Imageamento por Ressonância Magnética , Masculino , Camundongos , Ratos
4.
Brain Res Brain Res Rev ; 48(2): 265-72, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15850666

RESUMO

In recent years, progress has been made in characterizing the molecular and cellular elements that are responsible for the regeneration in the damaged brain and highlighting the key role of the stromal-vascular 'environment' to orchestrate secondary neurogenesis and repair. Indeed, the ability of the stem cells to self-renew and differentiate is tightly regulated by stromal ependymal cells and endothelial cells expressing molecular cues that constitute the extracellular stem cell 'niche'. Several soluble growth factors such as EGF, TGFbeta, FGF2, SDF-1alpha and Noggin are important signals for the stem cell niche but little is known about the role of membrane-bound molecules in intercellular communications between the niche and the stem cells. In this mini-review, we highlight the emerging role of a family of adhesion molecules in the control of secondary neurogenesis. The coxsackie-adenovirus receptor (CAR) is a 46 kDa transmembrane protein and a member of the immunoglobulin super family. It is close structurally and evolutionary to other adhesion molecules involved in cell-cell interactions during embryogenesis, broadly expressed in the developing central nervous system but restricted to ependymal cells in the adult brain. This unique location and its newly established signalling properties further support the role of CAR in intercellular communications. Elucidating the other signalling molecules and manipulating the stromal-vascular niche for example by adenovirus gene therapy remain important goals for future clinical applications.


Assuntos
Receptores Virais/genética , Receptores Virais/metabolismo , Células-Tronco/fisiologia , Animais , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia
5.
Brain Res Brain Res Rev ; 48(2): 220-33, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15850661

RESUMO

In invertebrates and primitive vertebrates, the brain contains large numbers of "professional" macrophages associated with neurones, ependymal tanycytes and radial glia to promote robust regenerative capacity. In higher vertebrates, hematogenous cells are largely excluded from the brain, and innate immune molecules and receptors produced by the resident "amateur" macrophages (microglia, astrocytes and ependymal cells) control pathogen infiltration and clearance of toxic cell debris. However, there is minimal capacity for regeneration. The transfer of function from hematogenous cells to macroglia and microglia is associated with the sophistication of a yet poorly-characterized neurone-glia network. This evolutionary pattern may have been necessary to reduce the risk of autoimmune attack while preserving the neuronal web but the ability to repair central nervous system damage may have been sacrificed in the process. We herein argue that it may be possible to re-educate and stimulate the resident phagocytes to promote clearance of pathogens (e.g., Prion), toxic cell debris (e.g., amyloid fibrils and myelin) and apoptotic cells. Moreover, as part of this greater division of labour between cell types in vertebrate brains, it may be possible to harness the newly described properties of glial stem cells in neuronal protection (revitalization) rather than replacement, and to control brain inflammation. We will also highlight the emerging roles of stromal ependymal cells in controlling stem cell production and migration into areas of brain damage. Understanding the mechanisms involved in the nurturing of damaged neurons by protective glial stem cells with the safe clearance of cell debris could lead to remedial strategies for chronic brain diseases.


Assuntos
Encefalopatias/imunologia , Doenças Transmissíveis/imunologia , Imunidade Inata , Inflamação/imunologia , Neuroglia/fisiologia , Células-Tronco/fisiologia , Animais , Encefalopatias/classificação , Encefalopatias/complicações , Epêndima/citologia , Humanos , Inflamação/complicações , Modelos Biológicos , Neuroglia/classificação , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA