Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Immunity ; 37(2): 314-25, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22902232

RESUMO

γδ T cells respond rapidly to keratinocyte damage, providing essential contributions to the skin wound healing process. The molecular interactions regulating their response are unknown. Here, we identify a role for interaction of plexin B2 with the CD100 receptor in epithelial repair. In vitro blocking of plexin B2 or CD100 inhibited γδ T cell activation. Furthermore, CD100 deficiency in vivo resulted in delayed repair of cutaneous wounds due to a disrupted γδ T cell response to keratinocyte damage. Ligation of CD100 in γδ T cells induced cellular rounding via signals through ERK kinase and cofilin. Defects in this rounding process were evident in the absence of CD100-mediated signals, thereby providing a mechanistic explanation for the defective wound healing in CD100-deficient animals. The discovery of immune functions for plexin B2 and CD100 provides insight into the complex cell-cell interactions between epithelial resident γδ T cells and the neighboring cells they support.


Assuntos
Antígenos CD/imunologia , Células de Langerhans/imunologia , Proteínas do Tecido Nervoso/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Semaforinas/imunologia , Linfócitos T/imunologia , Fatores de Despolimerização de Actina/metabolismo , Animais , Antígenos CD/metabolismo , Células CHO , Comunicação Celular/imunologia , Forma Celular , Cricetinae , Epiderme/imunologia , Epiderme/lesões , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Células de Langerhans/metabolismo , Ativação Linfocitária/imunologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Semaforinas/metabolismo , Análise de Sequência de Proteína , Ressonância de Plasmônio de Superfície , Linfócitos T/metabolismo , Cicatrização/imunologia
4.
J Immunol ; 192(12): 5695-702, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24808367

RESUMO

Skin-resident T cells have been shown to play important roles in tissue homeostasis and wound repair, but their role in UV radiation (UVR)-mediated skin injury and subsequent tissue regeneration is less clear. In this study, we demonstrate that acute UVR rapidly activates skin-resident T cells in humans and dendritic epidermal γδ T cells (DETCs) in mice through mechanisms involving the release of ATP from keratinocytes. Following UVR, extracellular ATP leads to an increase in CD69 expression, proliferation, and IL-17 production, and to changes in DETC morphology. Furthermore, we find that the purinergic receptor P2X7 and caspase-1 are necessary for UVR-induced IL-1 production in keratinocytes, which increases IL-17 secretion by DETCs. IL-17, in turn, induces epidermal TNF-related weak inducer of apoptosis and growth arrest and DNA damage-associated gene 45, two molecules linked to the DNA repair response. Finally, we demonstrate that DETCs and human skin-resident T cells limit DNA damage in keratinocytes. Taken together, our findings establish a novel role for skin-resident T cells in the UVR-associated DNA repair response and underscore the importance of skin-resident T cells to overall skin regeneration.


Assuntos
Reparo do DNA/efeitos da radiação , Epiderme/imunologia , Queratinócitos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T/imunologia , Raios Ultravioleta/efeitos adversos , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Reparo do DNA/genética , Reparo do DNA/imunologia , Epiderme/patologia , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Interleucina-17/imunologia , Queratinócitos/patologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Masculino , Camundongos , Camundongos Knockout , Regeneração/genética , Regeneração/imunologia , Regeneração/efeitos da radiação , Linfócitos T/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
5.
J Immunol ; 192(7): 2975-83, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24600030

RESUMO

Substances that penetrate the skin surface can act as allergens and induce a T cell-mediated inflammatory skin disease called contact hypersensitivity (CHS). IL-17 is a key cytokine in CHS and was originally thought to be produced solely by CD4(+) T cells. However, it is now known that several cell types, including γδ T cells, can produce IL-17. In this study, we determine the role of γδ T cells, especially dendritic epidermal T cells (DETCs), in CHS. Using a well-established model for CHS in which 2,4-dinitrofluorobenzene (DNFB) is used as allergen, we found that γδ T cells are important players in CHS. Thus, more IL-17-producing DETCs appear in the skin following exposure to DNFB in wild-type mice, and DNFB-induced ear swelling is reduced by ∼50% in TCRδ(-/-) mice compared with wild-type mice. In accordance, DNFB-induced ear swelling was reduced by ∼50% in IL-17(-/-) mice. We show that DNFB triggers DETC activation and IL-1ß production in the skin and that keratinocytes produce IL-1ß when stimulated with DNFB. We find that DETCs activated in vitro by incubation with anti-CD3 and IL-1ß produce IL-17. Importantly, we demonstrate that the IL-1R antagonist anakinra significantly reduces CHS responses, as measured by decreased ear swelling, inhibition of local DETC activation, and a reduction in the number of IL-17(+) γδ T cells and DETCs in the draining lymph nodes. Taken together, we show that DETCs become activated and produce IL-17 in an IL-1ß-dependent manner during CHS, suggesting a key role for DETCs in CHS.


Assuntos
Dermatite de Contato/imunologia , Interleucina-1beta/imunologia , Células de Langerhans/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular , Dermatite de Contato/genética , Dermatite de Contato/metabolismo , Dinitrofluorbenzeno/imunologia , Citometria de Fluxo , Expressão Gênica/imunologia , Interleucina-17/deficiência , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-1beta/genética , Interleucina-1beta/farmacologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Células de Langerhans/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/deficiência , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/citologia , Pele/imunologia , Pele/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
6.
Cell Immunol ; 296(1): 57-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25958272

RESUMO

Immunology has traditionally focused on the lymphocytes circulating among primary lymphoid organs while the large reservoir of tissue-resident T cells have received relatively less attention. In epithelia, these populations are comprised of significant, and sometimes exclusive, subsets of γδ T cells that are highly specialized in promoting tissue homeostasis. As the epithelial layers of the skin and gut are permanently exposed to the environment, they are continually subject to injury and therefore require highly efficient repair processes to maintain barrier functions. Here, we review the role of γδ T cells in promoting wound healing, a critical and complex process occurring in the skin and other barrier sites.


Assuntos
Epitélio/imunologia , Trato Gastrointestinal/lesões , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Pele/lesões , Linfócitos T/imunologia , Cicatrização/imunologia , Animais , Trato Gastrointestinal/imunologia , Humanos , Camundongos , Mucosa/imunologia , Transdução de Sinais/imunologia , Pele/imunologia
9.
Trends Immunol ; 32(6): 265-71, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21481636

RESUMO

γδ T cells lie at the interface between innate and adaptive immunity, sharing features with both arms of the immune system. The vast majority of γδ T cells reside in epithelial layers of tissues such as skin, gut, lung, tongue and reproductive tract where they provide a first line of defense against environmental attack. The existence of epithelium-resident γδ T cells has been known for over 20 years but our understanding of the molecular events regulating development and function of these cells is incomplete. We review recent advances in the field, with particular emphasis on the γδ T cell population resident in mouse epidermis. These studies have enhanced our knowledge and understanding of the life cycle of this enigmatic population of cells.


Assuntos
Células Epiteliais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Humanos , Linfócitos T/citologia
10.
J Immunol ; 188(7): 2972-6, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22393149

RESUMO

TCR-specific activation is pivotal to dendritic epidermal T cell (DETC) function during cutaneous wound repair. However, DETC TCR ligands are uncharacterized, and little is known about their expression patterns and kinetics. Using soluble DETC TCR tetramers, we demonstrate that DETC TCR ligands are not constitutively expressed in healthy tissue but are rapidly upregulated following wounding on keratinocytes bordering wound edges. Ligand expression is tightly regulated, with downmodulation following DETC activation. Early inhibition of TCR-ligand interactions using DETC TCR tetramers delays wound repair in vivo, highlighting DETC as rapid responders to injury. To our knowledge, this is the first visualization of DETC TCR ligand expression, which provides novel information about how ligand expression impacts early stages of DETC activation and wound repair.


Assuntos
Queratinócitos/metabolismo , Células de Langerhans/imunologia , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Cicatrização/imunologia , Animais , Regulação da Expressão Gênica , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T gama-delta/deficiência , Receptores de Antígenos de Linfócitos T gama-delta/genética , Timo/embriologia , Timo/imunologia
11.
Eur J Pharmacol ; 955: 175910, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479017

RESUMO

Previous studies have demonstrated the role of γ-aminobutyric acid type B (GABAB) receptors in skin-related conditions and pain. However, most studies have focused on the main effects of GABAB on the central nervous system. Therefore, this study has aimed to determine the potential topical anti-inflammatory and anti-proliferative effects of baclofen cream in an inflammatory skin disease model. The effects of the baclofen cream were evaluated using acute and chronic models of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mouse ears. Histological and immunohistochemical evaluations were performed using an ear oedema assay. The effect of baclofen on keratinocyte proliferation was assessed in PAM212, the murine keratinocyte cell line. The results demonstrate that a single topical application of 5% baclofen, 7.5% baclofen, and 1% dexamethasone each inhibited acute TPA-induced ear oedema (58.94 ± 6.14%, 47.73 ± 11.26%, and 87.33 ± 4.59%, respectively). These results were confirmed by histological analysis. In the chronic model, baclofen (5%) and dexamethasone (1%) each inhibited ear oedema and the maximum inhibitory effect was reached at the end of the experiment (9th day of TPA application) with a percentage inhibition of 54.60 ± 6.15% for baclofen and 71.68 ± 3.45% for dexamethasone, when compared to the vehicle. These results were confirmed by histological analysis. Baclofen and dexamethasone also reduced proliferating cell nuclear antigen expression by 62.01 ± 6.65% and 70.42 ± 6.11%, respectively. However, baclofen did not inhibit keratinocyte proliferation in PAM212 cells. In conclusion, these results demonstrate that baclofen exhibits notable topical antiproliferative and anti-inflammatory properties and could be a potential therapeutic alternative for treating inflammatory and proliferative skin diseases.


Assuntos
Dermatite , Dermatopatias , Animais , Camundongos , Baclofeno/farmacologia , Baclofeno/uso terapêutico , Agonistas dos Receptores de GABA-B/farmacologia , Agonistas dos Receptores de GABA-B/uso terapêutico , Dermatopatias/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Inflamação/tratamento farmacológico , Dexametasona/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Acetato de Tetradecanoilforbol/uso terapêutico
12.
J Immunol ; 184(10): 5423-8, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20483798

RESUMO

The murine epidermis contains resident T cells that express a canonical gammadelta TCR. These cells arise from fetal thymic precursors and use a TCR that is restricted to the skin in adult animals. These cells assume a dendritic morphology in normal skin and constitutively produce low levels of cytokines that contribute to epidermal homeostasis. When skin is wounded, an unknown Ag is expressed on damaged keratinocytes. Neighboring gammadelta T cells then round up and contribute to wound healing by local production of epithelial growth factors and inflammatory cytokines. In the absence of skin gammadelta T cells, wound healing is impaired. Similarly, epidermal T cells from patients with healing wounds are activated and secreting growth factors. Patients with nonhealing wounds have a defective epidermal T cell response. Information gained on the role of epidermal-resident T cells in the mouse may provide information for development of new therapeutic approaches to wound healing.


Assuntos
Epiderme/imunologia , Subpopulações de Linfócitos T/imunologia , Cicatrização/imunologia , Animais , Comunicação Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Epidérmicas , Epiderme/metabolismo , Epiderme/patologia , Homeostase/imunologia , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/biossíntese , Subpopulações de Linfócitos T/metabolismo
13.
Cell Mol Life Sci ; 68(14): 2399-408, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21560071

RESUMO

The murine epidermis contains resident T cells that express a canonical γδ TCR and arise from fetal thymic precursors. These cells are termed dendritic epidermal T cells (DETC) and use a TCR that is restricted to the skin in adult animals. DETC produce low levels of cytokines and growth factors that contribute to epidermal homeostasis. Upon activation, DETC can secrete large amounts of inflammatory molecules which participate in the communication between DETC, neighboring keratinocytes and langerhans cells. Chemokines produced by DETC may recruit inflammatory cells to the epidermis. In addition, cell-cell mediated immune responses also appear important for epidermal-T cell communication. Information is provided which supports a crucial role for DETC in inflammation, wound healing, and tumor surveillance.


Assuntos
Comunicação Celular/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Pele/imunologia , Linfócitos T/imunologia , Animais , Homeostase/imunologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Camundongos , Modelos Imunológicos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Pele/metabolismo , Linfócitos T/metabolismo
14.
J Leukoc Biol ; 111(1): 135-145, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33847413

RESUMO

Tissue-resident γδ T cells form the first line of defense at barrier surfaces where they survey host tissue for signs of stress or damage. Following recognition of injury, γδ T cells play a crucial role in the wound-healing response through the production of growth factors and cytokines that promote proliferation in surrounding epithelial cells. To initiate this response, γδ T cells require interactions with a variety of epithelial-expressed costimulatory molecules in addition to primary signaling through their TCR. In the epidermis these signals include the coxsackie and adenovirus receptor (CAR), histocompatibility antigen 60c (H60c), and plexin B2, which interact with γδ T cell-expressed junctional adhesion molecule-like protein (JAML), NKG2D, and CD100, respectively. Here we identify heat shock protein family A member 8 (Hspa8) and ICAM-1 as two additional keratinocyte-expressed costimulatory molecules for epidermal resident γδ T cells (termed DETC). These molecules were rapidly up-regulated in the epidermis following wounding in both mouse and human tissue. Both Hspa8 and ICAM-1 had a costimulatory effect on DETC, inducing proliferation, CD25 up-regulation, and IL-2 production. We also provide evidence that DETC can be activated through the potential ICAM-1 and Hspa8 receptors LFA-1 and CD316. Finally, knockdown of Hspa8 in keratinocytes reduced their ability to activate DETC in culture and ICAM-1-/- mice exhibited impaired rates of healing in skin-organ culture suggesting a role for these proteins in the DETC-mediated damage response. Together with previous work on CAR, H60c, and plexin B2, these results add to a picture of a complex keratinocyte wound signature that is required for efficient DETC activation.


Assuntos
Proteínas de Choque Térmico HSC70/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Animais , Proliferação de Células , Células Cultivadas , Humanos , Queratinócitos/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T/citologia
15.
J Exp Med ; 201(8): 1269-79, 2005 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-15837812

RESUMO

Nonhealing wounds are a major complication of diseases such as diabetes and rheumatoid arthritis. For efficient tissue repair, inflammatory cells must infiltrate into the damaged tissue to orchestrate wound closure. Hyaluronan is involved in the inflammation associated with wound repair and binds the surface of leukocytes infiltrating damaged sites. Skin gammadelta T cells play specialized roles in keratinocyte proliferation during wound repair. Here, we show that gammadelta T cells are required for hyaluronan deposition in the extracellular matrix (ECM) and subsequent macrophage infiltration into wound sites. We describe a novel mechanism of control in which gammadelta T cell-derived keratinocyte growth factors induce epithelial cell production of hyaluronan. In turn, hyaluronan recruits macrophages to the site of damage. These results demonstrate a novel function for skin gammadelta T cells in inflammation and provide a new perspective on T cell regulation of ECM molecules.


Assuntos
Ácido Hialurônico/biossíntese , Pele/imunologia , Pele/lesões , Subpopulações de Linfócitos T/imunologia , Cicatrização/imunologia , Animais , Linhagem Celular , Derme/imunologia , Derme/lesões , Epiderme/imunologia , Epiderme/lesões , Células Epiteliais/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucuronosiltransferase/biossíntese , Glucuronosiltransferase/genética , Hialuronan Sintases , Ácido Hialurônico/farmacologia , Inflamação/imunologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/deficiência , Receptores de Antígenos de Linfócitos T gama-delta/genética , Pele/metabolismo , Tela Subcutânea/imunologia , Tela Subcutânea/lesões
16.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34427588

RESUMO

T cells are critical mediators of antitumor immunity and a major target for cancer immunotherapy. Antibody blockade of inhibitory receptors such as PD-1 can partially restore the activity of tumor-infiltrating lymphocytes (TILs). However, the activation signals required to promote TIL responses are less well characterized. Here we show that the antitumor activity of CD8 and γδ TIL is supported by interactions between junctional adhesion molecule-like protein (JAML) on T cells and its ligand coxsackie and adenovirus receptor (CXADR) within tumor tissue. Loss of JAML through knockout in mice resulted in accelerated tumor growth that was associated with an impaired γδ TIL response and increased CD8 TIL dysfunction. In mouse tumor models, therapeutic treatment with an agonistic anti-JAML antibody inhibited tumor growth, improved γδ TIL activation, decreased markers of CD8 TIL dysfunction, and significantly improved response to anti-PD-1 checkpoint blockade. Thus, JAML represents a novel therapeutic target to enhance both CD8 and γδ TIL immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Imunoterapia/métodos , Melanoma Experimental/patologia , Animais , Linfócitos T CD8-Positivos/patologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Melanoma/genética , Melanoma/mortalidade , Melanoma/patologia , Melanoma Experimental/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/mortalidade , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia
17.
J Invest Dermatol ; 141(10): 2509-2520, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33848530

RESUMO

UVR and immunosuppression are major risk factors for cutaneous squamous cell carcinoma (cSCC). Regulatory T cells promote cSCC carcinogenesis, and in other solid tumors, infiltrating regulatory T cells and CD8+ T cells express ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) (also known as CD39), an ectoenzyme that catalyzes the rate-limiting step in converting extracellular adenosine triphosphate (ATP) to extracellular adenosine (ADO). We previously showed that extracellular purine nucleotides influence DNA damage repair. In this study, we investigate whether DNA damage repair is modulated through purinergic signaling in cSCC. We found increased ENTPD1 expression on T cells within cSCCs when compared with the expression on T cells from blood or nonlesional skin, and accordingly, concentrations of derivative extracellular adenosine diphosphate (ADP), adenosine monophosphate (AMP), and ADO are increased in tumors compared with those in normal skin. Importantly, ENTPD1 expression is significantly higher in human cSCCs that metastasize than in those that are nonmetastatic. We also identify in a mouse model that ENTPD1 expression is induced by UVR in an IL-27-dependent manner. Finally, increased extracellular ADO is shown to downregulate the expression of NAP1L2, a nucleosome assembly protein we show to be important for DNA damage repair secondary to UVR. Together, these data suggest a role for ENTPD1 expression on skin-resident T cells to regulate DNA damage repair through purinergic signaling to promote skin carcinogenesis and metastasis.


Assuntos
Adenosina/fisiologia , Apirase/fisiologia , Carcinoma de Células Escamosas/patologia , Reparo do DNA , Neoplasias Cutâneas/patologia , Raios Ultravioleta/efeitos adversos , Apirase/análise , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/imunologia , Dano ao DNA , Fatores de Transcrição Forkhead/análise , Humanos , Interleucina-27/fisiologia , Células T de Memória/imunologia , Metástase Neoplásica , Receptor de Morte Celular Programada 1/análise , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/imunologia
19.
Cells ; 9(3)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168884

RESUMO

While forming a minor population in the blood and lymphoid compartments, T cells are significantly enriched within barrier tissues. In addition to providing protection against infection, these tissue-resident T cells play critical roles in tissue homeostasis and repair. T cells in the epidermis and intestinal epithelium produce growth factors and cytokines that are important for the normal turnover and maintenance of surrounding epithelial cells and are additionally required for the efficient recognition of, and response to, tissue damage. A role for tissue-resident T cells is emerging outside of the traditional barrier tissues as well, with recent research indicating that adipose tissue-resident T cells are required for the normal maintenance and function of the adipose tissue compartment. Here we review the functions of tissue-resident T cells in the epidermis, intestinal epithelium, and adipose tissue, and compare the mechanisms of their activation between these sites.


Assuntos
Células Epiteliais/metabolismo , Linfócitos T/metabolismo , Cicatrização/imunologia , Humanos , Transdução de Sinais
20.
ACS Appl Bio Mater ; 3(8): 4779-4788, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32984778

RESUMO

Chronic wounds represent a growing clinical problem for which limited treatment strategies exist. Defects in immune cell-mediated healing play an important role in chronic wound development, presenting an attractive clinical target in the treatment of chronic wounds. However, efforts to improve healing through the application of growth factors and cytokines have been limited by the rapid degradation and diffusion of these molecules in the wound environment. In this study we sought to overcome the challenge of rapid diffusion through the development of a hydrogel delivery system in which protein cargo can be released into the wound environment at a constant and tunable rate. This system was used to deliver the intercellular adhesion molecule-1 (ICAM-1) in order to target endogenous cells upstream of growth factor and cytokine production and circumvent the issue of their rapid degradation. We demonstrated that our delivery system was able to release cargo at different and highly controllable rates and thereby improved cargo retention in the wound environment. Additionally, treatment with ICAM-1 in the delivery system improved healing in both ICAM-1-deficient mice and an aged mouse model of delayed healing, highlighting a potential clinical benefit for this protein in the treatment of chronic wounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA