Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37092314

RESUMO

Adipose tissue is a central organ for controlling systemic metabolism both in invertebrates and vertebrates. Here, we have investigated the developmental processes of the adult-type fat body (AFB) in Drosophila. We have established genetic tools that allow visualization and genetic manipulations of cells in the AFB lineage from early in metamorphosis. We identified precursor cells that give rise to the AFB and delineated dynamic cellular behaviors underlying AFB formation. These precursor cells displayed polarized cell shapes and oriented motility, with emigration from the thorax and subsequent dispersal to the abdomen and head. After the migration period, these cells adhered to each other, assembling into the AFB with a sheet-like architecture. Continuous cell proliferation occurred during and after the large-scale migration to achieve appropriate fat tissue mass. Homotypic cell fusion after the sheet formation contributed to the establishment of multinucleated cells in the AFB. We also examined candidate gene functions, and our results argue that ecdysone signaling and the transcription factor Serpent support adult fat body organogenesis.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Drosophila/metabolismo , Metamorfose Biológica/genética , Ecdisona/metabolismo , Tecido Adiposo/metabolismo , Larva/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
2.
Genes Cells ; 25(9): 626-636, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32594638

RESUMO

How nutrition impacts growth, reproduction and longevity is complex because relationships between these life events are difficult to disentangle. As a first step in sorting out these processes, we carried out a comparative analysis of related species of Drosophila with distinct feeding habits. In particular, we examined life spans and egg laying of two generalists and three specialists on diets with distinct protein-to-carbohydrate ratios. In contrast to the generalist D. melanogaster, adult males of two specialists, D. sechellia and D. elegans, lived longer on a protein-rich diet. These results and our previous studies collectively show that the diet to which larvae of each specialist species have adapted ensures a longer life span of adult males of that same species. We also found a species-specific sexual dimorphism of life span in the above two specialists regardless of the diets, which was in sharp contrast to D. melanogaster. In D. melanogaster, males lived longer than females, whereas females of D. sechellia and D. elegans were longer-lived than males, and those specialist females were exceedingly low in egg production, relative to the other species. We discuss our findings from perspectives of mechanisms, including a possible contribution of egg production to life span.


Assuntos
Drosophila melanogaster/fisiologia , Longevidade , Animais , Drosophila/fisiologia , Feminino , Masculino , Nutrientes , Óvulo , Reprodução , Caracteres Sexuais , Especificidade da Espécie
3.
Genes Cells ; 24(7): 464-472, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31095815

RESUMO

Dendrites of neurons receive and process synaptic or sensory inputs. The Drosophila class IV dendritic arborization (da) neuron is an established model system to explore molecular mechanisms of dendrite morphogenesis. The total number of dendritic branch terminals is one of the frequently employed parameters to characterize dendritic arborization complexity of class IV neurons. This parameter gives a useful phenotypic readout of arborization during neurogenesis, and it is typically determined by laborious manual analyses of numerous images. Ideally, an automated analysis would greatly reduce the workload; however, it is challenging to automatically discriminate dendritic branch terminals from signals of surrounding tissues in whole-mount live larvae. Here, we describe our newly developed software, called DeTerm, which automatically recognizes and quantifies dendrite branch terminals via an artificial neural network. Once we input an image file of a neuronal dendritic arbor and its region of interest information, DeTerm is capable of labeling terminals of larval class IV neurons with high precision, and it also provides positional data of individual terminals. We further show that DeTerm is applicable to other types of neurons, including mouse cerebellar Purkinje cells. DeTerm is freely available on the web and was successfully tested on Mac, Windows and Linux.


Assuntos
Cerebelo/fisiologia , Dendritos/fisiologia , Redes Neurais de Computação , Neurogênese , Neurônios/fisiologia , Células de Purkinje/fisiologia , Software , Animais , Cerebelo/citologia , Drosophila , Proteínas de Drosophila/metabolismo , Larva , Camundongos , Neurônios/citologia , Células de Purkinje/citologia
4.
Elife ; 122023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36647607

RESUMO

Nutrition in early life has profound effects on an organism, altering processes such as organogenesis. However, little is known about how specific nutrients affect neuronal development. Dendrites of class IV dendritic arborization neurons in Drosophila larvae become more complex when the larvae are reared on a low-yeast diet compared to a high-yeast diet. Our systematic search for key nutrients revealed that the neurons increase their dendritic terminal densities in response to a combined deficiency in vitamins, metal ions, and cholesterol. The deficiency of these nutrients upregulates Wingless in a closely located tissue, body wall muscle. Muscle-derived Wingless activates Akt in the neurons through the receptor tyrosine kinase Ror, which promotes the dendrite branching. In larval muscles, the expression of wingless is regulated not only in this key nutrient-dependent manner, but also by the JAK/STAT signaling pathway. Additionally, the low-yeast diet blunts neuronal light responsiveness and light avoidance behavior, which may help larvae optimize their survival strategies under low-nutritional conditions. Together, our studies illustrate how the availability of specific nutrients affects neuronal development through inter-organ signaling.


Assuntos
Dendritos , Proteínas de Drosophila , Animais , Dendritos/fisiologia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Neurônios/fisiologia , Nutrientes , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Sci Rep ; 13(1): 22100, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092851

RESUMO

Liver fibrosis is assessed mainly by conventional staining or second harmonic generation (SHG) microscopy, which can only provide collagen content in fibrotic area. We propose to use polarization-resolved SHG (PR-SHG) microscopy to quantify liver fibrosis in terms of collagen fiber orientation and crystallization. Liver samples obtained from autopsy cases with fibrosis stage of F0-F4 were evaluated with an SHG microscope, and 12 consecutive PR-SHG images were acquired while changing the polarization azimuth angle of the irradiated laser from 0° to 165° in 15° increments using polarizer. The fiber orientation angle (φ) and degree (ρ) of collagen were estimated from the images. The SHG-positive area increased as the fibrosis stage progressed, which was well consistent with Sirius Red staining. The value of φ was random regardless of fibrosis stage. The mean value of ρ (ρ-mean), which represents collagen fiber crystallinity, varied more as fibrosis progressed to stage F3, and converged to a significantly higher value in F4 than in other stages. Spatial dispersion of ρ (ρ-entropy) also showed increased variation in the stage F3 and decreased variation in the stage F4. It was shown that PR-SHG could provide new information on the properties of collagen fibers in human liver fibrosis.


Assuntos
Microscopia de Geração do Segundo Harmônico , Humanos , Microscopia de Geração do Segundo Harmônico/métodos , Colágeno , Cirrose Hepática , Refração Ocular , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA