RESUMO
Coral reefs are one of the most biologically diverse ecosystems, and the accurate identification of the species is essential for diversity assessment and conservation. Current genus determination approaches are time-consuming and resource-intensive and can be highly subjective. To explore the hypothesis that the small-molecule profiles of coral are genus-specific and can be used as a rapid tool to catalogue and distinguish between coral genera, the small-molecule chemical fingerprints of the species Acanthastrea echinata, Catalaphyllia jardinei, Duncanopsammia axifuga, Echinopora lamellosa, Euphyllia divisa, Euphyllia paraancora, Euphyllia paradivisa, Galaxea fascicularis, Herpolitha limax, Montipora confusa, Monitpora digitata, Montipora setosa, Pachyseris rugosa, Pavona cactus, Plerogyra sinuosa, Pocillopora acuta, Seriatopora hystrix, Sinularia dura, Turbinaria peltata, Turbinaria reniformis, Xenia elongata, and Xenia umbellata were generated using direct analysis in real time-high resolution mass spectrometry (DART-HRMS). It is demonstrated here that the mass spectrum-derived small-molecule profiles for coral of different genera are distinct. Multivariate statistical analysis processing of the DART-HRMS data enabled rapid genus-level differentiation based on the chemical composition of the coral. Coral samples were analyzed with no sample preparation required, making the approach rapid and efficient. The resulting spectra were subjected to kernel discriminant analysis (KDA), which furnished accurate genus differentiation of the coral. Leave-one-out cross-validation (LOOCV) was carried out to determine the classification accuracy of each model and confirm that this approach can be used for coral genus attribution with prediction accuracies ranging from 86.67 to 97.33%. The advantages and application of the statistical analysis to DART-HRMS-derived coral chemical signatures for genus-level differentiation are discussed.
Assuntos
Antozoários , Animais , Recifes de Corais , Ecossistema , Espectrometria de Massas , Análise MultivariadaRESUMO
Subjective cognitive decline, a perceived worsening of cognitive functioning without objective deficit on assessment, could indicate incipient dementia. However, the neural correlates of subjective cognitive decline as assessed by magnetic resonance imaging remain somewhat unclear. Here, we evaluated differences in functional connectivity across memory regions, and cognitive performance, between healthy older adults aged 50 to 85 with (nâ¯=â¯35, Ageâ¯=â¯68.5⯱â¯7.7, 22 female), and without (nâ¯=â¯48, Age = 67.0⯱â¯8.8, 29 female) subjective cognitive decline. We also evaluated neurite density, fractional anisotropy, and mean diffusivity of the parahippocampal cingulum, cingulate gyrus cingulum, and uncinate fiber bundles in a subsample of participants (nâ¯=â¯37). Participants with subjective cognitive decline displayed lower average functional connectivity across regions of a putative posterior memory system, and lower retrosplenial-precuneus functional connectivity specifically, than those without memory complaints. Furthermore, participants with subjective cognitive decline performed poorer than controls on visual working memory. However, groups did not differ in cingulum or uncinate diffusion measures. Our results show differences in functional connectivity and visual working memory in participants with subjective cognitive decline that could indicate potential incipient dementia.
Assuntos
Disfunção Cognitiva/fisiopatologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-IdadeRESUMO
Large-scale brain networks undergo functional reorganization over the course of the lifespan, with concurrent implications for cognition. Characterizing network connectivity during a task may provide complementary insight into cognitive development and aging, to that provided by resting-state. We assessed network background connectivity, which refers to connectivity that remains after task effects have been regressed out, during a visual memory-encoding task in a lifespan sample. More specifically we assessed the within- and between-network background connectivity of the default mode, salience, and frontoparietal networks. Within-network background connectivity of salience and frontoparietal networks differed between age groups, with late-life adults showing lower connectivity. We did not find an effect of age group in default mode network background connectivity, contrary to previous findings using resting-state. However, default mode between-network background connectivity with salience and frontoparietal networks was greater in mid-life and late-life adults than in younger age groups. Overall, our findings in a lifespan sample are in line with previous observations of age-related network de-differentiation. However, the lack of age effect in default mode network background connectivity suggests that background connectivity indeed represents a complementary measure to resting-state connectivity, providing a differential glance of network connectivity during a particular state.
RESUMO
Negative subsequent memory effects in functional MRI studies of memory formation have been linked to individual differences in memory performance, yet the effect of age on this association is currently unclear. To provide insight into the brain systems related to memory across the lifespan, we examined functional neuroimaging data acquired during episodic memory formation and behavioral performance from a memory recognition task in a sample of 109 participants, including three developmental age groups (8-12, 13-17, 18-25â¯year-olds) and one additional group of older adults (55-85â¯year-olds). Young adults showed the highest memory performance and strongest negative subsequent memory effects, while older adults showed reduced negative subsequent memory effects relative to young adults. Across the sample, negative subsequent memory effects were associated with better memory performance, and there was a significant interaction between negative subsequent memory effects and memory performance by age group. Posthoc analyses revealed that this moderation effect was driven by a stronger association between negative subsequent memory effects and memory performance in young adults than children, and that neither children nor older adults showed a significant association. These findings suggest that negative subsequent memory effects may differentially support memory performance across a lifespan trajectory characterized by developmental maturation and support further investigation of this effect in aging.
RESUMO
The personality traits of neuroticism, openness, and conscientiousness are relevant factors for cognitive aging outcomes. The present study examined how these traits were associated with cognitive abilities and corresponding resting-state functional connectivity (RSFC) of the default mode network (DMN) in an older and predominantly minority sample. A sample of 58 cognitively unimpaired, largely African-American, older adults (M age = 68.28 ± 8.33) completed a standard RSFC magnetic resonance imaging sequence, a Big Five measure of personality, and delayed memory, Stroop, and verbal fluency tasks. Personality trait associations of within-network connectivity of the posterior cingulate cortex (PCC), a hub of the DMN, were examined using a seed-based approach. Trait scores were regressed on cognitive performance (delayed memory for neuroticism, Stroop for conscientiousness, and verbal fluency for openness). Greater openness predicted greater verbal fluency and greater RSFC between the PCC and eight clusters, including the medial prefrontal cortex, left middle frontal gyrus, and precuneus. Greater PCC-precuneus connectivity predicted greater verbal fluency. Neuroticism and conscientiousness did not significantly predict either cognitive performance or RSFC. Although requiring replication and elaboration, the results implicate openness as a contributing factor to cognitive aging via concomitant cognitive performance and connectivity within cortical hubs of the DMN and add to the sparse literature on these variables in a diverse group of older adults.
RESUMO
Background: Yoga is a mind-body based physical activity that has demonstrated a variety of physiological, psychological and cognitive health benefits. Although yoga practice has shown to improve cognitive performance, few studies have examined the underlying neurological correlates. Objective: The current study aimed to determine the differences in gray matter volume of the hippocampus, thalamus and caudate nucleus and brain activation during the Sternberg working memory task. Method: Participants were 13 experienced yoga practitioners (mean age = 35.8), defined as having more than 3 years of regular yoga practice, and 13 age- and sex-matched controls (mean age = 35.7). All participants completed a 6-min walk test to assess fitness, psychosocial and demographic questionnaires; and underwent magnetic resonance imaging to assess gray matter volume and brain activation. Results: There were no group differences on demographic measures of income, education and on estimated VO2max or physical activity levels. Gray matter volume differences were observed in the left hippocampus, showing greater volume in experienced yoga practitioners compared to controls (p = 0.017). The functional MRI results revealed less activation in the dorsolateral prefrontal cortex in yoga practitioners compared to controls during the encoding phase of the Sternberg task (p < 0.05). Reaction time and accuracy on the task did not differ between the groups. Conclusions: Our results suggest an association between regular long-term yoga practice and differential structure and function of specific brain regions involved in executive function, specifically working memory, which has previously shown to improve with yoga practice. Future studies need to examine intervention effects of yoga and explore its potential to maintain and improve cognitive health across the lifespan through longitudinal and intervention studies.
RESUMO
BACKGROUND: Research in older adults with subjective cognitive decline (SCD) has mainly focused on Alzheimer's disease (AD)-related MRI markers, such as hippocampal volume. However, small vessel disease (SVD) is currently established as serious comorbidity in dementia and its preliminary stages. It is therefore important to examine SVD markers in addition to AD markers in older adults presenting with SCD. OBJECTIVE: The aim of our study was to elucidate the role of SVD markers in late middle-aged to older adults with and without SCD in addition to the commonly found role of AD markers (hippocampal volume). METHODS: 67 healthy late middle-aged to older adults participated in this study (mean age 68 years); 25 participants with SCD and 42 participants without SCD. We evaluated quantitative as well as qualitative AD markers (i.e., hippocampal volume and medial temporal lobe atrophy (MTA) scale) and SVD markers (i.e., white matter hyperintensities (WMH) volume, Fazekas scale, microbleeds, and lacunar infarcts), and neuropsychological function and amount of memory complaints. RESULTS: We found a significant effect of SCD on hippocampal atrophy, as assessed using the MTA scale, but not on hippocampal volume. In addition, we found a significant effect of SCD, and amount of memory complaints, on WMH volume and Fazekas score, suggesting larger WMH volumes in participants with SCD. CONCLUSION: SVD MRI markers are related to amount of memory complaints, in addition to the commonly observed AD MRI markers, as demonstrated by the greater WMHs in healthy late middle-aged to older adults with SCD.
Assuntos
Encéfalo/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-IdadeRESUMO
Subjective memory complaints, the perceived decline in cognitive abilities in the absence of clinical deficits, may precede Alzheimer's disease. Individuals with subjective memory complaints show differential brain activation during memory encoding; however, whether such differences contribute to successful memory formation remains unclear. Here, we investigated how subsequent memory effects, activation which is greater for hits than misses during an encoding task, differed between healthy older adults aged 50 to 85 years with (n = 23) and without (n = 41) memory complaints. Older adults with memory complaints, compared to those without, showed lower subsequent memory effects in the occipital lobe, superior parietal lobe, and posterior cingulate cortex. In addition, older adults with more memory complaints showed a more negative subsequent memory effects in areas of the default mode network, including the posterior cingulate cortex, precuneus, and ventromedial prefrontal cortex. Our findings suggest that for successful memory formation, older adults with subjective memory complaints rely on distinct neural mechanisms which may reflect an overall decreased task-directed attention.