Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Chemistry ; 29(5): e202203052, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36411247

RESUMO

Nesquehonite is a magnesium carbonate mineral relevant to carbon sequestration envisioned for carbon capture and storage of CO2 . Its chemical formula remains controversial today, assigned as either a hydrated magnesium carbonate [MgCO3 ⋅ 3H2 O], or a hydroxy- hydrated- magnesium bicarbonate [Mg(HCO3 )OH ⋅ 2H2 O]. The resolution of this controversy is central to understanding this material's thermodynamic, phase, and chemical behavior. In an NMR crystallography study, using rotational-echo double-resonance 13 C{1 H} (REDOR), 13 C-1 H distances are determined with precision, and the combination of 13 C static NMR lineshapes and density functional theory (DFT) calculations are used to model different H atomic coordinates. [MgCO3 ⋅ 3H2 O] is found to be accurate, and evidence from neutron powder diffraction bolsters these assignments. Refined H positions can help understand how H-bonding stabilizes this structure against dehydration to MgCO3 . More broadly, these results illustrate the power of NMR crystallography as a technique for resolving questions where X-ray diffraction is inconclusive.


Assuntos
Magnésio , Difração de Nêutrons , Magnésio/química , Cristalografia , Minerais/química , Cristalografia por Raios X
2.
J Phys Chem A ; 125(45): 9802-9818, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748350

RESUMO

An extensive correlated molecular orbital theory study of the reactions of CO2 with a range of substituted amines and H2O in the gas phase and aqueous solution was performed at the G3(MP2) level with a self-consistent reaction field approach. The G3(MP2) calculations were benchmarked at the CCSD(T)/CBS level for NH3 reactions. A catalytic NH3 reduces the energy barrier more than a catalytic H2O for the formation of H2NCOOH and H2CO3. In aqueous solution, the barriers to form both H2NCOOH and H2CO3 are reduced, with HCO3- formation possible with one amine present and H2NCOO- formation possible only with two amines. Further reactions of H2NCOOH to form HNCO and urea via the Bazarov reaction have high barriers and are unlikely in both the gas phase and aqueous solution. Reaction coordinates for CH3NH2, CH3CH2NH2, (CH3)2NH, CH3CH2CH2NH2, (CH3)3N, and DMAP were also calculated. The barrier for proton transfer correlates with amine basicity for alkylammonium carbamate (ΔG‡aq < 15 kcal/mol) and alkylammonium bicarbonate (ΔG‡aq < 30 kcal/mol) formation. In aqueous solution, carbamic acids, carbamates, and bicarbonates can all form in small amounts with ammonium carbamates dominating for primary and secondary alkylamines. These results have implications for CO2 capture by amines in both the gas phase and aqueous solution as well as in the solid state, if enough water is present.

3.
Angew Chem Int Ed Engl ; 58(13): 4210-4216, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30672073

RESUMO

Solid-state NMR measurements coupled with density functional theory (DFT) calculations demonstrate how hydrogen positions can be refined in a crystalline system. The precision afforded by rotational-echo double-resonance (REDOR) NMR to interrogate 13 C-1 H distances is exploited along with DFT determinations of the 13 C tensor of carbonates (CO3 2- ). Nearby 1 H nuclei perturb the axial symmetry of the carbonate sites in the hydrated carbonate mineral, hydromagnesite [4 MgCO3 ⋅Mg(OH)2 ⋅4 H2 O]. A match between the calculated structure and solid-state NMR was found by testing multiple semi-local and dispersion-corrected DFT functionals and applying them to optimize atom positions, starting from X-ray diffraction (XRD)-determined atomic coordinates. This was validated by comparing calculated to experimental 13 C{1 H} REDOR and 13 C chemical shift anisotropy (CSA) tensor values. The results show that the combination of solid-state NMR, XRD, and DFT can improve structure refinement for hydrated materials.

4.
J Am Chem Soc ; 140(29): 9148-9153, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29920076

RESUMO

The conventional synthesis of metal-organic frameworks (MOFs) through soluble metal-salt precursors provides little control over the growth of MOF crystals. The use of alternative metal precursors would provide a more flexible and cost-effective strategy for direction- and shape-controlled MOF synthesis. Here, we demonstrate for the first time the use of insoluble metal-carbon matrices to foster directed growth of MOFs. Aluminum carbide was implemented as both the metal precursor and growth-directing agent for the generation of MIL-53(Al). A unique needle-like morphology of the MOF was grown parallel to the bulk surface in a layer-by-layer manner. Importantly, the synthesis scheme was found to be transferrable to the production of different linker analogues of the MOF and other topologies. Given the variety of metal carbides available, these findings can be used as a blueprint for controlled, efficient, and economical MOF syntheses and set a new milestone toward the industrial use of MOFs at large-scale.

5.
J Am Chem Soc ; 140(28): 8648-8651, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29947515

RESUMO

We have identified a hydrated bicarbonate formed by chemisorption of 13CO2 on both dimethylaminopropylsilane (DMAPS) and aminopropylsilane (APS) pendant molecules grafted on SBA-15 mesoporous silica. The most commonly used sequence in solid-state NMR, 13C CPMAS, failed to detect bicarbonate in these solid amine sorbent samples; here, we have employed a Bloch decay ("pulse-acquire") sequence (with 1H decoupling) to detect such species. The water that is present contributes to the dynamic motion of the bicarbonate product, thwarting CPMAS but enabling direct 13C detection by shortening the spin-lattice relaxation time. Since solid-state NMR plays a major role in characterizing chemisorption reactions, these new insights that allow for the routine detection of previously elusive bicarbonate species (which are also challenging to observe in IR spectroscopy) represent an important advance. We note that employing this straightforward NMR technique can reveal the presence of bicarbonate that has often otherwise been overlooked, as demonstrated in APS, that has been thought to only contain adsorbed CO2 as carbamate and carbamic acid species. As in other systems (e.g., proteins), dynamic species that sample multiple environments tend to broaden as their motion is frozen out. Here, we show two distinct bicarbonate species upon freezing, and coupling to different protons is shown through preliminary 13C-1H HETCOR measurements. This work demonstrates that bicarbonates have likely been formed in the presence of water but have gone unobserved by NMR due to the nature of the experiments most routinely employed, a perspective that will transform the way the sorption community will view CO2 capture by amines.


Assuntos
Aminas/química , Bicarbonatos/análise , Dióxido de Carbono/química , Silanos/química , Dióxido de Silício/química , Adsorção , Espectroscopia de Ressonância Magnética , Metilação , Modelos Moleculares , Água/química
6.
Langmuir ; 34(41): 12279-12292, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30244578

RESUMO

Most studies exploring the capture of CO2 on solid-supported amines have focused on unhindered amines or alkylimine polymers. It has been observed in extensive solution studies that another class of amines, namely sterically hindered amines, can exhibit enhanced CO2 capacity when compared to their unhindered counterparts. In contrast to solution studies, there has been limited research conducted on sterically hindered amines on solid supports. In this work, one hindered primary amine and two hindered secondary amines are grafted onto mesoporous silica at similar amine coverages, and their adsorption performances are investigated through fixed bed breakthrough experiments and thermogravimetric analysis. Furthermore, chemisorbed CO2 species formed on the sorbents under dry and humid conditions are elucidated using in situ Fourier-transform infrared spectroscopy. Ammonium bicarbonate formation and enhancement of CO2 adsorption capacity is observed for all supported hindered amines under humid conditions. Our experiments in this study also suggest that chemisorbed CO2 species formed on supported hindered amines are weakly bound, which may lead to reduced energy costs associated with regeneration if such materials were deployed in a practical separation process. However, overall CO2 uptake capacities of the solid supported hindered amines are modest compared to their solution counterparts. The oxidative and thermal stabilities of the supported hindered amine sorbents are also assessed to give insight into their operational lifetimes.

7.
Environ Sci Technol ; 52(3): 1488-1495, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29257887

RESUMO

Materials composed of high-porosity solid supports, such as SBA-15, containing amine-bearing moieties inside the pores, such as 3-aminopropylsilane (APS), are envisioned for carbon dioxide capture; solid-state 15N NMR can be highly informative for studying chemisorption reactions. Two 15N-enriched samples with different APS loadings were studied to probe the identity of the pendant molecules and structure of the chemisorbed CO2 species. 15N cross-polarization magic-angle spinning NMR provides unique information about the amines, whether they are rigid or dynamic, by measuring contact time curves and rotating frame, T1ρ(15N), relaxation. Both carbamate and carbamic acid are formed; carbamic acid is shown to be less stable than carbamate. After desorption, a steady state for the chemisorbed reaction product is reached, leaving behind carbamate. 15N NMR monitors the evolution of the species over time. During desorption, APS is regenerated, but the ammonium propylsilane intensity does not change, leading us to conclude that carbamic acid desorbs, while carbamate (to which ammonium propylsilane is ion paired) persists. A secondary ditehtered amine present does not react with CO2, and we posit this may be due to its rigidity. These findings demonstrate the versatility of solid-state NMR to provide information about these complex CO2 reactions with solid amine sorbents.


Assuntos
Carbono , Dióxido de Silício , Adsorção , Aminas , Dióxido de Carbono
8.
J Am Chem Soc ; 139(11): 3930-3933, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28256125

RESUMO

We have measured the 75As signals arising from the interface region of single-crystal semi-insulating GaAs that has been coated and passivated with an aluminum oxide film deposited by atomic layer deposition (ALD) with optically pumped NMR (OPNMR). Using wavelength-selective optical pumping, the laser restricts the volume from which OPNMR signals are collected. Here, OPNMR signals were obtained from the interface region and distinguished from signals arising from the bulk. The interface region is highlighted by interactions that disrupt the cubic symmetry of the GaAs lattice, resulting in quadrupolar satellites for nuclear [Formula: see text] isotopes, whereas NMR of the "bulk" lattice is nominally unsplit. Quadrupolar splitting at the interface arises from strain based on lattice mismatch between the GaAs and ALD-deposited aluminum oxide due to their different coefficients of thermal expansion. Such spectroscopic evidence of strain can be useful for measuring lattice distortions at heterojunction boundaries and interfaces.

9.
Environ Sci Technol ; 51(11): 6553-6559, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28460168

RESUMO

Multiple chemisorption products are found from the interaction of CO2 with the solid-amine sorbent, 3-aminopropyl silane (APS), bound to mesoporous silica (SBA15) using solid-state NMR and FTIR spectroscopy. We employed a combination of both 15N{13C} rotational-echo double-resonance (REDOR) NMR and 13C{15N} REDOR to determine the chemical identity of these products. 15N{13C} REDOR measurements are consistent with a single 13C-15N pair and distance of 1.45 Å. In contrast, both 13C{15N} REDOR and 13C CPMAS are consistent with multiple 13C products. 13C CPMAS shows two neighboring resonances, whose chemical shifts are consistent with carbamate (at 165 ppm) and carbamic acid. The 13C{15N} REDOR experiments resonant at 165 ppm show an incomplete buildup of the REDOR data to ∼90% of the expected maximum. We conclude this 10% missing intensity corresponds to a 13C NMR species that resonates at the identical chemical shift but that is not in dipolar contact with 15N. These data are consistent with the presence of bicarbonate, HCO3-, since it is commonly observed at ∼165 ppm and lacks 15N for dipolar coupling.


Assuntos
Dióxido de Carbono , Dióxido de Silício , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
10.
Environ Sci Technol ; 49(3): 1631-8, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25588145

RESUMO

We have developed an approach for determining pH at elevated pressures and temperatures by using (13)C NMR measurements of inorganic carbon species together with a geochemical equilibrium model. The approach can determine in situ pH with precision better than 0.1 pH units at pressures, temperatures, and ionic strengths typical of geologic carbon sequestration systems. A custom-built high pressure NMR probe was used to collect (13)C NMR spectra of (13)C-labeled CO2 reactions with NaOH solutions and Mg(OH)2 suspensions at pressures up to 107 bar and temperatures of 80 °C. The quantitative nature of NMR spectroscopy allows the concentration ratio [CO2]/[HCO3(-)] to be experimentally determined. This ratio is then used with equilibrium constants calculated for the specific pressure and temperature conditions and appropriate activity coefficients for the solutes to calculate the in situ pH. The experimentally determined [CO2]/[HCO3(-)] ratios agree well with the predicted values for experiments performed with three different concentrations of NaOH and equilibration with multiple pressures of CO2. The approach was then applied to experiments with Mg(OH)2 slurries in which the change in pH could track the dissolution of CO2 into solution, rapid initial Mg(OH)2 dissolution, and onset of magnesium carbonate precipitation.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Dióxido de Carbono/química , Sequestro de Carbono , Geologia/métodos , Concentração de Íons de Hidrogênio , Magnésio/química , Pressão , Temperatura
11.
Environ Sci Technol ; 49(22): 13684-91, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26477882

RESUMO

Hyperbranched amine polymers (HAS) grown from the mesoporous silica SBA-15 (hereafter "SBA-15-HAS") exhibit large capacities for CO2 adsorption. We have used static in situ and magic-angle spinning (MAS) ex situ (13)C nuclear magnetic resonance (NMR) to examine the adsorption of CO2 by SBA-15-HAS. (13)C NMR distinguishes the signal of gas-phase (13)CO2 from that of the chemisorbed species. HAS polymers possess primary, secondary, and tertiary amines, leading to multiple chemisorption reaction outcomes, including carbamate (RnNCOO(-)), carbamic acid (RnNCOOH), and bicarbonate (HCO3(-)) moieties. Carbamates and bicarbonate fall within a small (13)C chemical shift range (162-166 ppm), and a mixture was observed including carbamic acid and carbamate, the former disappearing upon evacuation of the sample. By examining the (13)C-(14)N dipolar coupling through low-field (B0 = 3 T) (13)C{(1)H} cross-polarization MAS NMR, carbamate is confirmed through splitting of the (13)C resonance. A third species that is either bicarbonate or a second carbamate is evident from bimodal T2 decay times of the ∼163 ppm peak, indicating the presence of two species comprising that single resonance. The mixture of products suggests that (1) the presence of amines and water leads to bicarbonate being present and/or (2) the multiple types of amine sites in HAS permit formation of chemically distinct carbamates.


Assuntos
Dióxido de Carbono/química , Espectroscopia de Ressonância Magnética/métodos , Polímeros/química , Adsorção , Aminas/química , Carbamatos/química , Isótopos de Carbono , Dióxido de Silício , Água/química
12.
Environ Sci Technol ; 49(1): 657-64, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25437754

RESUMO

In the conversion of CO2 to mineral carbonates for the permanent geosequestration of CO2, there are multiple magnesium carbonate phases that are potential reaction products. Solid-state (13)C NMR is demonstrated as an effective tool for distinguishing magnesium carbonate phases and quantitatively characterizing magnesium carbonate mixtures. Several of these mineral phases include magnesite, hydromagnesite, dypingite, and nesquehonite, which differ in composition by the number of waters of hydration or the number of crystallographic hydroxyl groups. These carbonates often form in mixtures with nearly overlapping (13)C NMR resonances which makes their identification and analysis difficult. In this study, these phases have been investigated with solid-state (13)C NMR spectroscopy, including both static and magic-angle spinning (MAS) experiments. Static spectra yield chemical shift anisotropy (CSA) lineshapes that are indicative of the site-symmetry variations of the carbon environments. MAS spectra yield isotropic chemical shifts for each crystallographically inequivalent carbon and spin-lattice relaxation times, T1, yield characteristic information that assist in species discrimination. These detailed parameters, and the combination of static and MAS analyses, can aid investigations of mixed carbonates by (13)C NMR.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Magnésio/análise , Minerais/análise , Anisotropia , Prótons , Fatores de Tempo
13.
Environ Sci Technol ; 48(24): 14344-51, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25420634

RESUMO

Reactions of CO2 with magnesium silicate minerals to precipitate magnesium carbonates can result in stable carbon sequestration. This process can be employed in ex situ reactors or during geologic carbon sequestration in magnesium-rich formations. The reaction of aqueous CO2 with the magnesium silicate mineral forsterite was studied in systems with transport controlled by diffusion. The approach integrated bench-scale experiments, an in situ spectroscopic technique, and reactive transport modeling. Experiments were performed using a tube packed with forsterite and open at one end to a CO2-rich solution. The location and amounts of carbonate minerals that formed were determined by postexperiment characterization of the solids. Complementing this ex situ characterization, (13)C NMR spectroscopy tracked the inorganic carbon transport and speciation in situ. The data were compared with the output of reactive transport simulations that accounted for diffusive transport processes, aqueous speciation, and the forsterite dissolution rate. All three approaches found that the onset of magnesium carbonate precipitation was spatially localized about 1 cm from the opening of the forsterite bed. Magnesite was the dominant reaction product. Geochemical gradients that developed in the diffusion-limited zones led to locally supersaturated conditions at specific locations even while the volume-averaged properties of the system remained undersaturated.


Assuntos
Dióxido de Carbono/química , Silicatos de Magnésio/química , Magnésio/química , Compostos de Silício/química , Sequestro de Carbono , Carbonatos/química , Precipitação Química , Difusão , Pressão , Temperatura , Água/química
14.
Environ Sci Technol ; 47(1): 119-25, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22676479

RESUMO

We explore a new in situ NMR spectroscopy method that possesses the ability to monitor the chemical evolution of supercritical CO(2) in relevant conditions for geological CO(2) sequestration. As a model, we use the fast reaction of the mineral brucite, Mg(OH)(2), with supercritical CO(2) (88 bar) in aqueous conditions at 80 °C. The in situ conversion of CO(2) into metastable and stable carbonates is observed throughout the reaction. After more than 58 h of reaction, the sample was depressurized and analyzed using in situ Raman spectroscopy, where the laser was focused on the undisturbed products through the glass reaction tube. Postreaction, ex situ analysis was performed on the extracted and dried products using Raman spectroscopy, powder X-ray diffraction, and magic-angle spinning (1)H-decoupled (13)C NMR. These separate methods of analysis confirmed a spatial dependence of products, possibly caused by a gradient of reactant availability, pH, and/or a reaction mechanism that involves first forming hydroxy-hydrated (basic, hydrated) carbonates that convert to the end-product, anhydrous magnesite. This carbonation reaction illustrates the importance of static (unmixed) reaction systems at sequestration-like conditions.


Assuntos
Poluentes Atmosféricos/química , Dióxido de Carbono/química , Sequestro de Carbono , Magnésio/química , Espectroscopia de Ressonância Magnética , Pressão , Temperatura
15.
Inorg Chem ; 50(11): 4683-5, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21517056

RESUMO

A scalable synthesis of the "flat" tridecameric inorganic cluster [Al(13)(µ(3)-OH)(6)(µ-OH)(18)(H(2)O)(24)](15+) has been realized by treating an aqueous aluminum nitrate solution with a zinc-metal powder at room temperature. Single crystals and polycrystalline samples are readily obtained in yields exceeding 55% relative to the starting reagent Al(NO(3))(3). Products have been characterized by X-ray diffraction and solid-state (27)Al MAS and MQMAS NMR.

16.
Inorg Chem ; 50(11): 5054-9, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21563767

RESUMO

We report here on the polymerization of epoxide monomers on incipient aluminum nanoparticle cores and the effects of changing the epoxide-capping precursor and the metallic monomer ratio on the resultant stability and particle size of passivated and capped aluminum nanoparticles. When altering the ratio of aluminum to cap monomer precursor, nanoparticles capped with epoxydodecane, epoxyhexane, and epoxyisobutane show a clear decreasing trend in stability with decreasing alkane substituent length. The nanoparticle core size was unaffected by cap ratio or composition. PXRD (powder X-ray diffraction) and DSC/TGA (differential scanning calorimetry/thermal gravimetric analysis) confirm the presence of successfully passivated face-centered cubic (fcc) aluminum nanoparticles. We also report preliminary results from ATR-FTIR (attenuated total reflectance-Fourier transform infrared), (13)C CPMAS (cross-polarization/magic-angle spinning), and (27)Al MAS solid-state NMR (nuclear magnetic resonance) measurements. The most stable aluminum nanoparticle-polyether core-shell nanoparticles are found at an Al:monomer mole ratio of 10:1 with an active Al(0) content of 94%.

17.
ACS Appl Mater Interfaces ; 13(6): 7278-7284, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33533240

RESUMO

The preferential adsorption of SOx versus water in Mg-MOF-74 from a humid SOx gas stream has been investigated via materials studies and nuclear magnetic resonance (NMR). Mg-MOF-74 has been synthesized and subsequently loaded simultaneously with water vapor and SOx (62-96 ppm) in an adsorption chamber at room temperature over a time period of 4 days with a sample taken every 24 h. Each sample was analyzed by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA)-mass spectrometry, and scanning electron microscopy-energy-dispersive spectroscopy. The metal-organic framework (MOF) showed retained crystallinity and peak intensity in PXRD, and after 2 days, it showed no obvious degradation to the structure. Use of multiple techniques, including TGA, identified 10% by weight of SOx species, specifically H2S and SO2, within the MOF. 1H solid-state NMR shows a substantial reduction of H2O when SOx is present, which is consistent with SOx preferentially binding to the oxophilic metal site of the framework. After 14 weeks aging, the sulfur remains present in the three-dimensional MOF, with only half being desorbed after 23 weeks in air.

18.
Nanoscale ; 13(26): 11387-11395, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160531

RESUMO

Nonthermal plasma (NTP) offers a unique synthesis environment capable of producing nanocrystals of high melting point materials at relatively low gas temperatures. Despite the rapidly growing material library accessible through NTP synthesis, designing processes for new materials is predominantly empirically driven. Here, we report on the synthesis of both amorphous alumina and γ-Al2O3 nanocrystals and present a simple particle heating model that is suitable for predicting the plasma power necessary for crystallization. The heating model only requires the composition, temperature, and pressure of the background gas along with the reactor geometry to calculate the temperature of particles suspended in the plasma as a function of applied power. Complete crystallization of the nanoparticle population was observed when applied power was greater than the threshold where the calculated particle temperature is equal to the crystallization temperature of amorphous alumina.

19.
J Magn Reson ; 327: 106980, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33940541

RESUMO

The physical phenomena governing hyperpolarization through optical pumping of conduction electrons continue to be explored in multiple semiconductor systems. One early finding has been the asymmetry between the optically pumped nuclear magnetic resonance (OPNMR) signals when generated by different circular polarizations (i.e., light helicities). Because these resonances are asymmetric, the midpoint between the signals prepared with each of the two circular polarizations is either a positive or negative value, termed an "offset" that is representative of an optical Overhauser enhancement. Both negative offsets (in GaAs) and positive offsets (in CdTe) have been observed. The origins of these offsets in semiconductors are believed to arise from thermalized electrons; however, to the best of our knowledge, no study has systematically tested this hypothesis. To that end, we have adopted two configurations for OPNMR experiments-one in which the Poynting vector of the laser light and magnetic field are parallel, and one in which they are antiparallel, while other experimental conditions are kept the same. We find that the OPNMR signal response to a fixed helicity of light depends on the experimental configuration, and this configuration needs to be accounted for in order to properly describe the OPNMR results. Further, studying the offsets as a function of field strength shows that the optical Overhauser enhancement (the offset) increases in magnitude with field strength. Finally, by describing all angular momentum and phasing conventions unambiguously, we are able to determine that the absorptively-phased appearance of 113Cd (and 125Te) OPNMR in CdTe is a consequence of the sign of the nuclear gyromagnetic ratios for these isotopes.

20.
J Phys Chem B ; 112(41): 12920-6, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18811189

RESUMO

We have detected a phase transition during the progress of the solid-state [2 + 2] photocycloaddition reaction of alpha-trans-cinnamic acid. The reaction was monitored using (13)C CPMAS experiments as a function of irradiation time of the parent alpha-trans-cinnamic acid, which forms the product dimer, alpha-truxillic acid. UV light centered at 350 nm was used for photoirradiation, which is in the "tail" of the absorption band of cinnamic acid. Two different crystal polymorphs of alpha-truxillic acid are observed (P2(1)/n and C2/c) at different stages of conversion of the parent crystal, assigned through (13)C NMR and powder X-ray diffraction. The two polymorphs showed clear, distinguishable patterns in the (13)C NMR spectra: a 2-peak versus 3-peak pattern corresponding to sites on the 4-membered sp (3) hybridized ring in the photoproduct. A phase transition is observed midway through the reaction, which we have assigned to the conversion of the P2(1)/n polymorph to the C2/ c polymorph of alpha-truxillic acid. The packing energy of the resultant mixed crystal of cinnamic acid and truxillic acid changes during the course of the photoreaction, which allows for the C2/c polymorph of truxillic acid to appear. Both phases have been confirmed via X-ray powder diffraction. Two techniques--differential scanning calorimetry and solid-state CPMAS NMR using increasingly fast rotational frequencies--demonstrate that the P2(1)/n phase is metastable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA