Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315885

RESUMO

Targeting current therapies to treat or prevent the loss of pancreatic islet ß-cells in Type 1 Diabetes (T1D) may provide improved efficacy and reduce off-target effects. Current efforts to target the ß-cell are limited by a lack of ß-cell-specific targets and the inability to test multiple targeting moieties with the same delivery vehicle. Here, we fabricate a tailorable polycaprolactone nanocapsule (NC) in which multiple different targeting peptides can be interchangeably attached for ß-cell-specific delivery. Incorporation of a cationic surfactant in the NC shell allows for the attachment of Exendin-4 and an antibody for ectonucleoside triphosphate diphosphohydrolase 3 (ENTPD3) for ß-cell-specific targeting. The average NC size ranges from 250 to 300 nm with a polydispersity index under 0.2. The NCs are nontoxic, stable in media culture, and can be lyophilized and reconstituted. NCs coated with a targeting peptide were taken up by human cadaveric islet ß-cells and human stem cell-derived ß-like cells (sBC) in vitro with a high level of specificity. Furthermore, NCs successfully delivered both hydrophobic and hydrophilic cargo to human ß-cells. Additionally, Exendin-4-coated NCs were stable and targeted the mouse pancreatic islet ß-cell in vivo. Overall, our tailorable NCs have the potential to improve cell-targeted drug delivery and can be utilized as a screening platform to test the efficacy of cell-targeting peptides.

2.
bioRxiv ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39071322

RESUMO

Targeting of current therapies to treat or prevent loss of pancreatic islet ß-cells in Type 1 Diabetes (T1D) may provide improved efficacy and reduce off target effects. Current efforts to target the ß-cell are limited by a lack of ß-cell specific targets and the inability to test multiple targeting moieties with the same delivery vehicle. Here we fabricate a novel tailorable polycaprolactone nanocapsule (NC) where multiple different targeting peptides can be interchangeably attached for ß-cell specific delivery. Incorporation of a cationic surfactant in the NC shell allows for the attachment of Exendin-4 and an antibody for ectonucleoside triphosphate diphosphohydrolase 3 (ENTPD3) for ß-cell specific targeting. The average NC size ranges from 250-300nm with a polydispersity index under 0.2. The NCs are non-toxic, stable in media culture, and can be lyophilized and reconstituted. NCs coated with targeting peptide were taken up by human cadaveric islet ß-cells and human stem cell-derived ß-like cells (sBC) in vitro with a high level of specificity. Furthermore, NCs successfully delivered both hydrophobic and hydrophilic cargo to human ß-cells. Finally, Exendin-4 coated NCs were stable and targeted the mouse pancreatic islet ß-cell in vivo . Our unique NC design allows for the interchangeable coating of targeting peptides for future screening of targets with improved cell specificity. The ability to target and deliver thera-peutics to human pancreatic ß-cells opens avenues for improved therapies and treatments to help the delay onset, prevent, or reverse T1D.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA