Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.049
Filtrar
1.
Nat Immunol ; 24(2): 255-266, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658237

RESUMO

Despite tumor-associated macrophages (TAMs) playing a key role in shaping the tumor microenvironment (TME), the mechanisms by which TAMs influence the TME and contribute to cancer progression remain unclear. Here, we show that the N6-methyladenosine reader YTHDF2 regulates the antitumor functions of TAMs. YTHDF2 deficiency in TAMs suppressed tumor growth by reprogramming TAMs toward an antitumoral phenotype and increasing their antigen cross-presentation ability, which in turn enhanced CD8+ T cell-mediated antitumor immunity. YTHDF2 deficiency facilitated the reprogramming of TAMs by targeting interferon-γ-STAT1 signaling. The expression of YTHDF2 in TAMs was regulated by interleukin-10-STAT3 signaling. Selectively targeting YTHDF2 in TAMs using a Toll-like receptor 9 agonist-conjugated small interfering RNA reprogrammed TAMs toward an antitumoral phenotype, restrained tumor growth and enhanced the efficacy of PD-L1 antibody therapy. Collectively, our findings describe the role of YTHDF2 in orchestrating TAMs and suggest that YTHDF2 inhibition is an effective approach to enhance cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Macrófagos , Macrófagos Associados a Tumor , Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Cell ; 172(1-2): 90-105.e23, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29249359

RESUMO

R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Glutaratos/farmacologia , Leucemia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Antineoplásicos/uso terapêutico , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Glutaratos/uso terapêutico , Células HEK293 , Humanos , Células Jurkat , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Processamento Pós-Transcricional do RNA
3.
Cell ; 169(7): 1187-1200, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622506

RESUMO

Over 100 types of chemical modifications have been identified in cellular RNAs. While the 5' cap modification and the poly(A) tail of eukaryotic mRNA play key roles in regulation, internal modifications are gaining attention for their roles in mRNA metabolism. The most abundant internal mRNA modification is N6-methyladenosine (m6A), and identification of proteins that install, recognize, and remove this and other marks have revealed roles for mRNA modification in nearly every aspect of the mRNA life cycle, as well as in various cellular, developmental, and disease processes. Abundant noncoding RNAs such as tRNAs, rRNAs, and spliceosomal RNAs are also heavily modified and depend on the modifications for their biogenesis and function. Our understanding of the biological contributions of these different chemical modifications is beginning to take shape, but it's clear that in both coding and noncoding RNAs, dynamic modifications represent a new layer of control of genetic information.


Assuntos
Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Animais , Humanos , Nucleotídeos/química , Nucleotídeos/metabolismo , RNA/química , RNA/genética
4.
Cell ; 171(4): 877-889.e17, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28965759

RESUMO

N6-methyladenosine (m6A), installed by the Mettl3/Mettl14 methyltransferase complex, is the most prevalent internal mRNA modification. Whether m6A regulates mammalian brain development is unknown. Here, we show that m6A depletion by Mettl14 knockout in embryonic mouse brains prolongs the cell cycle of radial glia cells and extends cortical neurogenesis into postnatal stages. m6A depletion by Mettl3 knockdown also leads to a prolonged cell cycle and maintenance of radial glia cells. m6A sequencing of embryonic mouse cortex reveals enrichment of mRNAs related to transcription factors, neurogenesis, the cell cycle, and neuronal differentiation, and m6A tagging promotes their decay. Further analysis uncovers previously unappreciated transcriptional prepatterning in cortical neural stem cells. m6A signaling also regulates human cortical neurogenesis in forebrain organoids. Comparison of m6A-mRNA landscapes between mouse and human cortical neurogenesis reveals enrichment of human-specific m6A tagging of transcripts related to brain-disorder risk genes. Our study identifies an epitranscriptomic mechanism in heightened transcriptional coordination during mammalian cortical neurogenesis.


Assuntos
Neurogênese , Prosencéfalo/embriologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Animais , Ciclo Celular , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Organoides/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Estabilidade de RNA
5.
Mol Cell ; 84(3): 596-610.e6, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215754

RESUMO

Although DNA N6-methyl-deoxyadenosine (6mA) is abundant in bacteria and protists, its presence and function in mammalian genomes have been less clear. We present Direct-Read 6mA sequencing (DR-6mA-seq), an antibody-independent method, to measure 6mA at base resolution. DR-6mA-seq employs a unique mutation-based strategy to reveal 6mA sites as misincorporation signatures without any chemical or enzymatic modulation of 6mA. We validated DR-6mA-seq through the successful mapping of the well-characterized G(6mA)TC motif in the E. coli DNA. As expected, when applying DR-6mA-seq to mammalian systems, we found that genomic DNA (gDNA) 6mA abundance is generally low in most mammalian tissues and cells; however, we did observe distinct gDNA 6mA sites in mouse testis and glioblastoma cells. DR-6mA-seq provides an enabling tool to detect 6mA at single-base resolution for a comprehensive understanding of DNA 6mA in eukaryotes.


Assuntos
Metilação de DNA , Escherichia coli , Animais , Camundongos , Escherichia coli/genética , Genoma/genética , DNA/metabolismo , Eucariotos/genética , Desoxiadenosinas/genética , Mamíferos/metabolismo
6.
Mol Cell ; 84(6): 1120-1138.e8, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38377992

RESUMO

UFMylation is an emerging ubiquitin-like post-translational modification that regulates various biological processes. Dysregulation of the UFMylation pathway leads to human diseases, including cancers. However, the physiological role of UFMylation in T cells remains unclear. Here, we report that mice with conditional knockout (cKO) Ufl1, a UFMylation E3 ligase, in T cells exhibit effective tumor control. Single-cell RNA sequencing analysis shows that tumor-infiltrating cytotoxic CD8+ T cells are increased in Ufl1 cKO mice. Mechanistically, UFL1 promotes PD-1 UFMylation to antagonize PD-1 ubiquitination and degradation. Furthermore, AMPK phosphorylates UFL1 at Thr536, disrupting PD-1 UFMylation to trigger its degradation. Of note, UFL1 ablation in T cells reduces PD-1 UFMylation, subsequently destabilizing PD-1 and enhancing CD8+ T cell activation. Thus, Ufl1 cKO mice bearing tumors have a better response to anti-CTLA-4 immunotherapy. Collectively, our findings uncover a crucial role of UFMylation in T cells and highlight UFL1 as a potential target for cancer treatment.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Cell ; 167(3): 816-828.e16, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27745969

RESUMO

tRNA is a central component of protein synthesis and the cell signaling network. One salient feature of tRNA is its heavily modified status, which can critically impact its function. Here, we show that mammalian ALKBH1 is a tRNA demethylase. It mediates the demethylation of N1-methyladenosine (m1A) in tRNAs. The ALKBH1-catalyzed demethylation of the target tRNAs results in attenuated translation initiation and decreased usage of tRNAs in protein synthesis. This process is dynamic and responds to glucose availability to affect translation. Our results uncover reversible methylation of tRNA as a new mechanism of post-transcriptional gene expression regulation.


Assuntos
Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas/genética , RNA de Transferência/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Glucose/deficiência , Células HeLa , Humanos , Metilação , Polirribossomos/metabolismo
8.
Mol Cell ; 83(3): 343-351, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736309

RESUMO

DNA N6-methyldeoxyadenosine (6mA) modification was first discovered in Bacterium coli in the 1950s. Over the next several decades, 6mA was recognized as a critical DNA modification in the genomes of prokaryotes and protists. While important in prokaryotes, less is known about the presence and functional roles of DNA 6mA in eukaryotes, particularly in mammals. Taking advantage of recent technology advances that made 6mA detection and sequencing possible, studies over the past several years have brought new insights into 6mA biology in mammals. In this perspective, we present recent progress, discuss challenges, and pose four questions for future research regarding mammalian DNA 6mA.


Assuntos
Metilação de DNA , DNA , Animais , DNA/genética , DNA/metabolismo , Eucariotos/genética , Adenosina , Mamíferos/genética , Mamíferos/metabolismo
9.
Mol Cell ; 83(7): 1022-1023, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028412

RESUMO

In this issue, Ciesla et al.1 report a translation regulation through ALKBH5-mediated 5'-UTR m6A demethylation of the SF3B1 transcript during leukemic transformation. The SF3B1 protein maintains efficient splicing and expression of transcripts encoding DNA damage repair components to restrain excessive DNA damage.


Assuntos
Fosfoproteínas , Splicing de RNA , Fatores de Processamento de RNA/genética , Mutação , Fosfoproteínas/genética , Splicing de RNA/genética , Dano ao DNA/genética
10.
Mol Cell ; 83(12): 2003-2019.e6, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257451

RESUMO

Regulation of RNA substrate selectivity of m6A demethylase ALKBH5 remains elusive. Here, we identify RNA-binding motif protein 33 (RBM33) as a previously unrecognized m6A-binding protein that plays a critical role in ALKBH5-mediated mRNA m6A demethylation of a subset of mRNA transcripts by forming a complex with ALKBH5. RBM33 recruits ALKBH5 to its m6A-marked substrate and activates ALKBH5 demethylase activity through the removal of its SUMOylation. We further demonstrate that RBM33 is critical for the tumorigenesis of head-neck squamous cell carcinoma (HNSCC). RBM33 promotes autophagy by recruiting ALKBH5 to demethylate and stabilize DDIT4 mRNA, which is responsible for the oncogenic function of RBM33 in HNSCC cells. Altogether, our study uncovers the mechanism of selectively demethylate m6A methylation of a subset of transcripts during tumorigenesis that may explain demethylation selectivity in other cellular processes, and we showed its importance in the maintenance of tumorigenesis of HNSCC.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Carcinogênese
11.
Mol Cell ; 83(15): 2692-2708.e7, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37478845

RESUMO

N6-methyladenosine (m6A) of mRNAs modulated by the METTL3-METTL14-WTAP-RBM15 methyltransferase complex and m6A demethylases such as FTO play important roles in regulating mRNA stability, splicing, and translation. Here, we demonstrate that FTO-IT1 long noncoding RNA (lncRNA) was upregulated and positively correlated with poor survival of patients with wild-type p53-expressing prostate cancer (PCa). m6A RIP-seq analysis revealed that FTO-IT1 knockout increased mRNA m6A methylation of a subset of p53 transcriptional target genes (e.g., FAS, TP53INP1, and SESN2) and induced PCa cell cycle arrest and apoptosis. We further showed that FTO-IT1 directly binds RBM15 and inhibits RBM15 binding, m6A methylation, and stability of p53 target mRNAs. Therapeutic depletion of FTO-IT1 restored mRNA m6A level and expression of p53 target genes and inhibited PCa growth in mice. Our study identifies FTO-IT1 lncRNA as a bona fide suppressor of the m6A methyltransferase complex and p53 tumor suppression signaling and nominates FTO-IT1 as a potential therapeutic target of cancer.


Assuntos
Neoplasias , RNA Longo não Codificante , Masculino , Camundongos , Animais , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/genética , Adenosina/metabolismo , RNA Mensageiro/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
12.
Mol Cell ; 83(23): 4304-4317.e8, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37949069

RESUMO

RNA-binding proteins (RBPs) control messenger RNA fate in neurons. Here, we report a mechanism that the stimuli-induced neuronal translation is mediated by phosphorylation of a YTHDF1-binding protein FMRP. Mechanistically, YTHDF1 can condense with ribosomal proteins to promote the translation of its mRNA targets. FMRP regulates this process by sequestering YTHDF1 away from the ribosome; upon neuronal stimulation, FMRP becomes phosphorylated and releases YTHDF1 for translation upregulation. We show that a new small molecule inhibitor of YTHDF1 can reverse fragile X syndrome (FXS) developmental defects associated with FMRP deficiency in an organoid model. Our study thus reveals that FMRP and its phosphorylation are important regulators of activity-dependent translation during neuronal development and stimulation and identifies YTHDF1 as a potential therapeutic target for FXS in which developmental defects caused by FMRP depletion could be reversed through YTHDF1 inhibition.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Humanos , Fosforilação , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Mol Cell ; 83(23): 4334-4351.e7, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37979586

RESUMO

Growth factor receptors rank among the most important oncogenic pathways, but pharmacologic inhibitors often demonstrate limited benefit as monotherapy. Here, we show that epidermal growth factor receptor (EGFR) signaling repressed N6-methyladenosine (m6A) levels in glioblastoma stem cells (GSCs), whereas genetic or pharmacologic EGFR targeting elevated m6A levels. Activated EGFR induced non-receptor tyrosine kinase SRC to phosphorylate the m6A demethylase, AlkB homolog 5 (ALKBH5), thereby inhibiting chromosomal maintenance 1 (CRM1)-mediated nuclear export of ALKBH5 to permit sustained mRNA m6A demethylation in the nucleus. ALKBH5 critically regulated ferroptosis through m6A modulation and YTH N6-methyladenosine RNA binding protein (YTHDF2)-mediated decay of the glutamate-cysteine ligase modifier subunit (GCLM). Pharmacologic targeting of ALKBH5 augmented the anti-tumor efficacy of EGFR and GCLM inhibitors, supporting an EGFR-ALKBH5-GCLM oncogenic axis. Collectively, EGFR reprograms the epitranscriptomic landscape through nuclear retention of the ALKBH5 demethylase to protect against ferroptosis, offering therapeutic paradigms for the treatment of lethal cancers.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Receptores ErbB , Ferroptose , Glioblastoma , Humanos , Adenosina/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Receptores ErbB/genética , Ferroptose/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , RNA Mensageiro/genética
14.
Nat Rev Mol Cell Biol ; 19(12): 808, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30341428

RESUMO

In Figure 5, translation initiation is promoted not by the indicated protein, but by YTHDF1 (see below).

15.
Cell ; 161(6): 1388-99, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046440

RESUMO

N(6)-methyladenosine (m(6)A) is the most abundant internal modification in mammalian mRNA. This modification is reversible and non-stoichiometric and adds another layer to the dynamic control of mRNA metabolism. The stability of m(6)A-modified mRNA is regulated by an m(6)A reader protein, human YTHDF2, which recognizes m(6)A and reduces the stability of target transcripts. Looking at additional functional roles for the modification, we find that another m(6)A reader protein, human YTHDF1, actively promotes protein synthesis by interacting with translation machinery. In a unified mechanism of m(6)A-based regulation in the cytoplasm, YTHDF2-mediated degradation controls the lifetime of target transcripts, whereas YTHDF1-mediated translation promotion increases translation efficiency, ensuring effective protein production from dynamic transcripts that are marked by m(6)A. Therefore, the m(6)A modification in mRNA endows gene expression with fast responses and controllable protein production through these mechanisms.


Assuntos
Adenosina/análogos & derivados , Adenosina/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas , Humanos , Fatores de Iniciação de Peptídeos/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo
16.
Cell ; 161(4): 879-892, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25936837

RESUMO

N(6)-methyldeoxyadenosine (6mA or m(6)A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here, we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms.


Assuntos
Adenina/análogos & derivados , Chlamydomonas reinhardtii/genética , Sítio de Iniciação de Transcrição , 5-Metilcitosina/metabolismo , Adenina/metabolismo , Chlamydomonas reinhardtii/metabolismo , DNA de Algas/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Nucleossomos/metabolismo , Transcrição Gênica
17.
Cell ; 161(4): 868-78, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25936839

RESUMO

In mammalian cells, DNA methylation on the fifth position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC, as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N(6)-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylations of histone H3K4 and adenines and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Metilação de DNA , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Adenina/metabolismo , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Fertilidade , Histonas/metabolismo , Mutação , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Filogenia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética
18.
Cell ; 161(4): 893-906, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25936838

RESUMO

DNA N(6)-methyladenine (6mA) modification is commonly found in microbial genomes and plays important functions in regulating numerous biological processes in bacteria. However, whether 6mA occurs and what its potential roles are in higher-eukaryote cells remain unknown. Here, we show that 6mA is present in Drosophila genome and that the 6mA modification is dynamic and is regulated by the Drosophila Tet homolog, DNA 6mA demethylase (DMAD), during embryogenesis. Importantly, our biochemical assays demonstrate that DMAD directly catalyzes 6mA demethylation in vitro. Further genetic and sequencing analyses reveal that DMAD is essential for development and that DMAD removes 6mA primarily from transposon regions, which correlates with transposon suppression in Drosophila ovary. Collectively, we uncover a DNA modification in Drosophila and describe a potential role of the DMAD-6mA regulatory axis in controlling development in higher eukaryotes.


Assuntos
Adenina/análogos & derivados , Metilação de DNA , Drosophila/metabolismo , Adenina/metabolismo , Sequência de Aminoácidos , Animais , Elementos de DNA Transponíveis , Drosophila/embriologia , Drosophila/enzimologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Ovário/metabolismo , Alinhamento de Sequência , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo
19.
Annu Rev Biochem ; 83: 585-614, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905787

RESUMO

The importance of eukaryotic DNA methylation [5-methylcytosine (5mC)] in transcriptional regulation and development was first suggested almost 40 years ago. However, the molecular mechanism underlying the dynamic nature of this epigenetic mark was not understood until recently, following the discovery that the TET proteins, a family of AlkB-like Fe(II)/α-ketoglutarate-dependent dioxygenases, can oxidize 5mC to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since then, several mechanisms that are responsible for processing oxidized 5mC derivatives to achieve DNA demethylation have emerged. Our biochemical understanding of the DNA demethylation process has prompted new investigations into the biological functions of DNA demethylation. Characterization of two additional AlkB family proteins, FTO and ALKBH5, showed that they possess demethylase activity toward N(6)-methyladenosine (m(6)A) in RNA, indicating that members of this subfamily of dioxygenases have a general function in demethylating nucleic acids. In this review, we discuss recent advances in this emerging field, focusing on the mechanism and function of TET-mediated DNA demethylation.


Assuntos
Metilação de DNA , DNA/química , Regulação da Expressão Gênica , Oxigênio/química , RNA/química , 5-Metilcitosina/química , Animais , Citosina/análogos & derivados , Citosina/química , Escherichia coli/metabolismo , Genoma , Células Germinativas/citologia , Células HEK293 , Humanos , Metilação , Camundongos , Neoplasias/genética , Células-Tronco/citologia , Transcriptoma
20.
Nat Rev Mol Cell Biol ; 18(1): 31-42, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27808276

RESUMO

The recent discovery of reversible mRNA methylation has opened a new realm of post-transcriptional gene regulation in eukaryotes. The identification and functional characterization of proteins that specifically recognize RNA N6-methyladenosine (m6A) unveiled it as a modification that cells utilize to accelerate mRNA metabolism and translation. N6-adenosine methylation directs mRNAs to distinct fates by grouping them for differential processing, translation and decay in processes such as cell differentiation, embryonic development and stress responses. Other mRNA modifications, including N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine, together with m6A form the epitranscriptome and collectively code a new layer of information that controls protein synthesis.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , 5-Metilcitosina/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Humanos , Metilação , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/química , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA