Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Mol Life Sci ; 79(11): 554, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251080

RESUMO

Huntingtin-associated protein 1 (HAP1) is the first identified protein whose function is affected by its abnormal interaction with mutant huntingtin (mHTT), which causes Huntington disease. However, the expression patterns of Hap1 and Htt in the rodent brain are not correlated. Here we found that the primate HAP1, unlike the rodent Hap1, is correlatively expressed with HTT in the primate brains. CRISPR/Cas9 targeting revealed that HAP1 deficiency in the developing human neurons did not affect neuronal differentiation and gene expression as seen in the mouse neurons. However, deletion of HAP1 exacerbated neurotoxicity of mutant HTT in the organotypic brain slices of adult monkeys. These findings demonstrate differential HAP1 expression and function in the mouse and primate brains, and suggest that interaction of HAP1 with mutant HTT may be involved in mutant HTT-mediated neurotoxicity in adult primate neurons.


Assuntos
Proteína Huntingtina , Doença de Huntington , Proteínas do Tecido Nervoso , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Primatas/genética , Primatas/metabolismo
2.
Genome Res ; 28(10): 1481-1493, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30154223

RESUMO

Naive pluripotency exists in epiblast cells of mouse pre-implantation embryos. However, whether the naive pluripotency is transient or nonexistent in primate embryos remains unclear. Using RNA-seq in single blastomeres from 16-cell embryos through to hatched blastocysts of rhesus monkey, we constructed the lineage segregation roadmap in which the specification of trophectoderm, epiblast, and primitive endoderm is initiated simultaneously at the early blastocyst stage. Importantly, we uncovered the existence of distinct pluripotent states in monkey pre-implantation embryos. At the early- and middle-blastocyst stages, the epiblast cells have the transcriptome features of naive pluripotency, whereas they display a continuum of primed pluripotency characteristics at the late and hatched blastocyst stages. Moreover, we identified potential regulators that might play roles in the transition from naive to primed pluripotency. Thus, our study suggests the transient existence of naive pluripotency in primates and proposes an ideal time window for derivation of primate embryonic stem cells with naive pluripotency.


Assuntos
Blastômeros/citologia , Macaca mulatta/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Blastômeros/química , Linhagem da Célula , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/citologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Modelos Animais
3.
Genome Res ; 27(4): 567-579, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28223401

RESUMO

Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey.


Assuntos
Blastocisto/metabolismo , Reparo do DNA por Junção de Extremidades , Oócitos/metabolismo , Transcriptoma , Animais , Quebras de DNA de Cadeia Dupla , Feminino , Macaca mulatta , Especificidade da Espécie
4.
Mol Hum Reprod ; 22(5): 316-28, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26916381

RESUMO

STUDY HYPOTHESIS: Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING: Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY: In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5-6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT-PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE: By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously support the presence of active germ stem cells in postnatal ovaries and their function in replenishing primordial follicle pool under physiological conditions. Moreover, we pointed out that Oct4(+) deleted in azoospermia-like (Dazl)(-) but not Oct4(+)Dazl(+) or Oct4(+) DEAD (Asp-Glu-Ala-Asp) Box Polypeptide 4 (Ddx4)(+) cells contain a population of germ stem cells in mouse ovary. LIMITATIONS, REASONS FOR CAUTION: This study was conducted in mice. Whether or not the results are applicable to human remain unclear. The future work should aim at identifying the specific ovarian germ stem cell marker and evaluating the significance of these stem cells to normal ovarian function. WIDER IMPLICATIONS OF THE FINDINGS: Clarifying the existence of active germ stem cells and their functional significance in postnatal mammalian ovaries could provide new insights in understanding the mechanism of ovarian aging and failure. LARGE SCALE DATA: Not applicable. STUDY FUNDING/COMPETING INTERESTS: This work was supported by the National Key Basic Research Program of China (grant number 2012CBA01300) and the National Natural Science Foundation of China to P.Z. (31571484). No competing interests are reported.


Assuntos
Células Germinativas/metabolismo , Ovário/metabolismo , Células-Tronco/metabolismo , Animais , Feminino , Células Germinativas/citologia , Humanos , Masculino , Meiose/genética , Meiose/fisiologia , Camundongos , Camundongos Transgênicos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Ovário/citologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/citologia , Suínos
6.
Brain Pathol ; : e13277, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779803

RESUMO

Growing evidence indicates that non-neuronal oligodendrocyte plays an important role in Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. In patient's brain, the impaired myelin structure is a pathological feature with the observation of TDP-43 in cytoplasm of oligodendrocyte. However, the mechanism underlying the gain of function by TDP-43 in oligodendrocytes, which are vital for the axonal integrity, remains unclear. Recently, we found that the primate-specific cleavage of truncated TDP-43 fragments occurred in cytoplasm of monkey neural cells. This finding opened up the avenue to investigate the myelin integrity affected by pathogenic TDP-43 in oligodendrocytes. In current study, we demonstrated that the truncated TDP-35 in oligodendrocytes specifically, could lead to the dysfunctional demyelination in corpus callosum of monkey. As a consequence of the interaction of myelin regulatory factor with the accumulated TDP-35 in cytoplasm, the downstream myelin-associated genes expression was downregulated at the transcriptional level. Our study aims to investigate the potential effect on myelin structure injury, affected by the truncated TDP-43 in oligodendrocyte, which provided the additional clues on the gain of function during the progressive pathogenesis and symptoms in TDP-43 related diseases.

7.
Front Neurosci ; 17: 1238306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37539389

RESUMO

Introduction: Huntington's disease (HD) is caused by expanded CAG repeats in the huntingtin gene (HTT) and is characterized by late-onset neurodegeneration that primarily affects the striatum. Several studies have shown that mutant HTT can also affect neuronal development, contributing to the late-onset neurodegeneration. However, it is currently unclear whether mutant HTT impairs the development of glial cells, which is important for understanding whether mutant HTT affects glial cells during early brain development. Methods: Using HD knock-in mice that express full-length mutant HTT with a 140 glutamine repeat at the endogenous level, we analyzed the numbers of astrocytes and oligodendrocytes from postnatal day 1 to 3 months of age via Western blotting and immunocytochemistry. We also performed electron microscopy, RNAseq analysis, and quantitative RT-PCR. Results: The numbers of astrocytes and oligodendrocytes were not significantly altered in postnatal HD KI mice compared to wild type (WT) mice. Consistently, glial protein expression levels were not significantly different between HD KI and WT mice. However, at 3 months of age, myelin protein expression was reduced in HD KI mice, as evidenced by Western blotting and immunocytochemical results. Electron microscopy revealed a slight but significant reduction in myelin thickness of axons in the HD KI mouse brain at 3 months of age. RNAseq analysis did not show significant reductions in myelin-related genes in postnatal HD KI mice. Conclusion: These data suggest that cytoplasmic mutant HTT, rather than nuclear mutant HTT, mediates myelination defects in the early stages of the disease without impacting the differentiation and maturation of glial cells.

8.
Front Aging Neurosci ; 14: 1065183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704504

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases, characterized by gradual and selective loss of neurons in the central nervous system. They affect more than 50 million people worldwide, and their incidence increases with age. Although most cases of AD and PD are sporadic, some are caused by genetic mutations that are inherited. Both sporadic and familial cases display complex neuropathology and represent the most perplexing neurological disorders. Because of the undefined pathogenesis and complex clinical manifestations, there is still no effective treatment for both AD and PD. Understanding the pathogenesis of these important neurodegenerative diseases is important for developing successful therapies. Increasing evidence suggests that microglial autophagy is associated with the pathogenesis of AD and PD, and its dysfunction has been implicated in disease progression. In this review, we focus on the autophagy function in microglia and its dysfunction in AD and PD disease models in an attempt to help our understanding of the pathogenesis and identifying new therapeutic targets of AD and PD.

9.
Zool Res ; 39(6): 387-395, 2018 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-29955025

RESUMO

DNA damage in oocytes can cause infertility and birth defects. DNA double-strand breaks (DSBs) are highly deleterious and can substantially impair genome integrity. Homologous recombination (HR)-mediated DNA DSB repair plays dominant roles in safeguarding oocyte quantity and quality. However, little is known regarding the key players of the HR repair pathway in oocytes. Here, we identified oocyte-specific gene Ooep as a novel key component of the HR repair pathway in mouse oocytes. OOEP was required for efficient ataxia telangiectasia mutated (ATM) kinase activation and Rad51 recombinase(RAD51)focal accumulation at DNA DSBs. Ooep null oocytes were defective in DNA DSB repair and prone to apoptosis upon exogenous DNA damage insults. Moreover, Ooep null oocytes exhibited delayed meiotic maturation. Therefore, OOEP played roles in preserving oocyte quantity and quality by maintaining genome stability. Ooep expression decreased with the advance of maternal age, suggesting its involvement in maternal aging.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Oócitos/metabolismo , Proteínas de Ligação a RNA/fisiologia , Envelhecimento , Animais , Feminino , Meiose/genética , Camundongos/genética , Camundongos Endogâmicos C57BL/genética , Recombinação Genética/genética
10.
Dongwuxue Yanjiu ; 34(2): 127-31, 2013 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-23572363

RESUMO

In this paper, partial sequences of the tree shrew (Tupaia belangeri) Klf4, Sox2, and c-Myc genes were cloned and sequenced, which were 382, 612, and 485 bp in length and encoded 127, 204, and 161 amino acids, respectively. Whereas, their cDNA sequence identities with those of human were 89%, 98%, and 89%, respectively. Their phylogenetic tree results indicated different topologies and suggested individual evolutional pathways. These results can facilitate further functional studies.


Assuntos
Clonagem Molecular , Proteínas/genética , Tupaia/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , DNA Complementar/genética , Feminino , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Mamíferos/classificação , Mamíferos/genética , Camundongos , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Ratos , Alinhamento de Sequência
11.
Genet Test Mol Biomarkers ; 16(7): 806-11, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22313097

RESUMO

BACKGROUND: C677T polymorphism of the methylenetetrahydrofolate reductase (MTHFR) has been associated with recurrent pregnancy loss (RPL). However, results were conflicting. The aim of this study was to quantitatively summarize the evidence for MTHFR C677T polymorphism and RPL risk. METHODS: Electronic search of PubMed and the Chinese Biomedicine database was conducted to select studies. Case-control studies containing available genotype frequencies of C677T were chosen, and odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of this association. RESULTS: The case-control studies including 2427 cases and 3118 controls were identified. The meta-analysis stratified by ethnicity showed that individuals with the homozygous TT genotype had increased risk of RPL (OR=1.574, 95% CI: 1.163-2.13, p=0.003), in Asians (OR=1.663, 95% CI: 1.012-2.731, p=0.045). Results among Caucasians did not suggest an association (OR=1.269, 95% CI: 0.914-1.761, p=0.155). A symmetric funnel plot, the Egger's test (p=0.285), and the Begg's test (p=0.529) were all suggestive of the lack of publication bias. The studies conducted in each of the defined number of pregnancy losses-two or more pregnancy losses, and three or more pregnancy losses-showed no effect of the C677T polymorphism on RPL except for the TT versus CT+CT genotype comparison for the three or more pregnancy loss subgroup (OR=1.792, 95% CI: 1.187-2.704, p=0.005). CONCLUSION: This meta-analysis supports the idea that MTHFR C677T genotype is associated with increased risk of RPL, except for Caucasians. To draw comprehensive and true conclusions, further prospective studies with larger numbers of participants worldwide are needed to examine associations between MTHFR C677T polymorphism and RPL.


Assuntos
Aborto Habitual/etnologia , Aborto Habitual/genética , Homozigoto , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo Genético , Feminino , Humanos , Gravidez , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA