Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Acta Pharmacol Sin ; 41(11): 1457-1464, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32424239

RESUMO

Mitsugumin 53 (MG53) is a tripartite motif family protein that has been reported to attenuate injury via membrane repair in different organs. Contrast-induced acute kidney injury (CI-AKI) is a common complication caused by the administration of iodinated contrast media (CM). While the cytotoxicity induced by CM leading to tubular cell death may be initiated by cell membrane damage, we wondered whether MG53 alleviates CI-AKI. This study was designed to investigate the effect of MG53 on CI-AKI and the underlying mechanism. A rat model of CI-AKI was established, and CI-AKI induced the translocation of MG53 from serum to injury sites on the renal proximal tubular (RPT) epithelia, as illustrated by immunoblot analysis and immunohistochemical staining. Moreover, pretreatment of rats with recombinant human MG53 protein (rhMG53, 2 mg/mL) alleviated iopromide-induced injury in the kidney, which was determined by measuring serum creatinine, blood urea nitrogen and renal histological changes. In vitro studies demonstrated that exposure of RPT cells to iopromide (20, 40, and 80 mg/mL) caused cell membrane injury and cell death, which were attenuated by rhMG53 (10 and 50 µg/mL). Mechanistically, MG53 translocated to the injury site on RPT cells and bound to phosphatidylserine to protect RPT cells from iopromide-induced injury. In conclusion, MG53 protects against CI-AKI through cell membrane repair and reducing cell apoptosis; therefore, rhMG53 might be a potential effective means to treat or prevent CI-AKI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Apoptose/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Proteínas com Motivo Tripartido/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Membrana Celular/metabolismo , Células Epiteliais , Feminino , Humanos , Iohexol/análogos & derivados , Rim/patologia , Túbulos Renais Proximais/citologia , Masculino , Fosfatidilserinas/metabolismo , Substâncias Protetoras/metabolismo , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Proteínas com Motivo Tripartido/metabolismo
2.
Clin Exp Nephrol ; 24(11): 989-998, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32734507

RESUMO

BACKGROUND: Contrast-induced nephropathy (CIN), a complication caused by using contrast medium during diagnostic and interventional procedures, occurs frequently and lacks effective treatment. AdipoRon, the agonist of adiponectin receptors, has been shown to benefit many organs including the kidney. This study aimed to investigate the role of AdipoRon in treating CIN. METHODS: CIN model was established via infusing iopromide (1.8 g/kg) in Sprague-Dawley (SD) rats; NRK52E cells were treated with iopromide (5-50 µM). Renal function, renal histopathology, levels of lactate dehydrogenase (LDH) release, cell vitality, oxidative stress and inflammatory markers were measured to evaluate the protective effects of AdipoRon. The level of pAMPK/AMPK was determined by western blot. RESULTS: AdipoRon (50 mg/kg) significantly reversed serum creatinine, blood urea nitrogen, creatinine clearance and urinary kidney injury molecule-1 levels induced by iopromide in SD rats. Besides, it decreased the renal injury score and apoptosis of renal cells. AdipoRon also reversed the changes of antioxidant markers, pro-oxidant and inflammatory markers induced by iopromide. Moreover, the in vitro studies showed that AdipoRon decreased LDH release and increased cell vitality in NRK52E cells treated with iopromide. Then, we demonstrated that the protection of AdipoRon was accompanied by augmented AMPK phosphorylation. Both in vivo and in vitro studies demonstrated that compound c, an AMPK inhibitor, reversed the AdipoRon-mediated improvement in the CIN model. CONCLUSION: Our data indicate that AdipoRon protects against the CIN by suppressing oxidative stress and inflammation via activating the AMPK pathway, showing that AdipoRon might be a potential candidate for the prevention and therapy of CIN.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Meios de Contraste/efeitos adversos , Iohexol/análogos & derivados , Nefropatias/prevenção & controle , Piperidinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Moléculas de Adesão Celular/urina , Linhagem Celular , Creatinina/sangue , Modelos Animais de Doenças , Inflamação/prevenção & controle , Iohexol/efeitos adversos , Nefropatias/induzido quimicamente , Nefropatias/patologia , Lactato Desidrogenases/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Adiponectina/agonistas , Transdução de Sinais/efeitos dos fármacos
3.
Acta Pharmacol Sin ; 40(10): 1314-1321, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31061533

RESUMO

Irisin, a myokine, is cleaved from the extracellular portion of fibronectin domain-containing 5 protein in skeletal muscle and myocardium and secreted into circulation as a hormone during exercise. Irisin has been found to exert protective effects against lung and heart injuries. However, whether irisin influences myocardial infarction (MI) remains unclear. In this study we investigated the therapeutic effects of irisin in an acute MI model and its underlying mechanisms. Adult C57BL/6 mice were subjected to ligation of the left anterior descending coronary artery and treated with irisin for 2 weeks after MI. Cardiac function was assessed using echocardiography. We found that irisin administration significantly alleviated MI-induced cardiac dysfunction and ventricular dilation at 4 weeks post-MI. Irisin significantly reduced infarct size and fibrosis in post-MI hearts. Irisin administration significantly increased angiogenesis in the infarct border zone and decreased cardiomyocyte apoptosis, but did not influence cardiomyocyte proliferation. In human umbilical vein endothelial cells (HUVEC), irisin significantly increased the phosphorylation of ERK, and promoted the migration of HUVEC detected in wound-healing and transwell chamber migration assay. The effects of irisin were blocked by the ERK inhibitor U0126. In conclusion, irisin improves cardiac function and reduces infarct size in post-MI mouse heart. The therapeutic effect is associated with its pro-angiogenic function through activating ERK signaling pathway.


Assuntos
Fibronectinas/metabolismo , Infarto do Miocárdio/metabolismo , Neovascularização Patológica/metabolismo , Animais , Apoptose/efeitos dos fármacos , Butadienos/farmacologia , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fibronectinas/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Neovascularização Patológica/patologia , Nitrilas/farmacologia , Proteínas Recombinantes/metabolismo
4.
J Cardiovasc Pharmacol ; 72(6): 259-269, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29979350

RESUMO

Irisin, a muscle-origin protein derived from the extracellular domain of the fibronectin domain-containing 5 protein (FNDC5), has been shown to modulate mitochondria welfare through paracrine action. Here, we test the hypothesis that irisin contributes to cardioprotection after myocardial infarction by preserving mitochondrial function in cardiomyocytes. Animal model studies show that intravenous administration of exogenous irisin produces dose-dependent protection against ischemia/reperfusion (I/R)-induced injury to the heart as reflected by the improvement of left ventricular ejection fraction and the reduction in serum level of cTnI (n = 15, P < 0.05). I/R-induced apoptosis of cardiomyocytes is reduced after irisin treatment. The irisin-mediated protection has, at least in part, an effect on mitochondrial function because administration of irisin increases irisin staining in the mitochondria of the infarct area. Irisin also reduces I/R-induced oxidative stress as determined by mitochondrial membrane potential evaluation and superoxide FLASH event recording (n = 4, P < 0.05). The interaction between irisin and superoxide dismutase2 (SOD2) plays a key role in the protective process because irisin treatment increases SOD activity (n = 10, P < 0.05) and restores the mitochondria localization of SOD2 in cardiomyocytes (n = 5, P < 0.05). These results demonstrate that irisin plays a protective role against I/R injury to the heart. Targeting the action of irisin in mitochondria presents a novel therapeutic intervention for myocardial infarction.


Assuntos
Antioxidantes/farmacologia , Fibronectinas/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Troponina I/sangue , Função Ventricular Esquerda/efeitos dos fármacos
5.
J Biol Chem ; 290(40): 24592-603, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26306047

RESUMO

Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53(-/-) mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-ß-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-ß signaling may present a potentially effective means for promoting scarless wound healing.


Assuntos
Proteínas de Transporte/fisiologia , Membrana Celular/metabolismo , Proteínas Musculares/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Cicatrização/fisiologia , Células 3T3 , Actinas/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Cicatriz/patologia , Colágeno Tipo I/metabolismo , Fibroblastos/citologia , Fibronectinas/metabolismo , Fibrose/patologia , Regulação da Expressão Gênica , Humanos , Hidrogéis/química , Queratinócitos/metabolismo , Proteínas de Membrana , Camundongos , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Coelhos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Pele/patologia , Proteínas com Motivo Tripartido
6.
Circulation ; 130(17): 1452-1465, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25156994

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have recently been implicated in many biological processes and diseases. Atherosclerosis is a major risk factor for cardiovascular disease. However, the functional role of lncRNAs in atherosclerosis is largely unknown. METHODS AND RESULTS: We identified lincRNA-p21 as a key regulator of cell proliferation and apoptosis during atherosclerosis. The expression of lincRNA-p21 was dramatically downregulated in atherosclerotic plaques of ApoE(-/-) mice, an animal model for atherosclerosis. Through loss- and gain-of-function approaches, we showed that lincRNA-p21 represses cell proliferation and induces apoptosis in vascular smooth muscle cells and mouse mononuclear macrophage cells in vitro. Moreover, we found that inhibition of lincRNA-p21 results in neointimal hyperplasia in vivo in a carotid artery injury model. Genome-wide analysis revealed that lincRNA-p21 inhibition dysregulated many p53 targets. Furthermore, lincRNA-p21, a transcriptional target of p53, feeds back to enhance p53 transcriptional activity, at least in part, via binding to mouse double minute 2 (MDM2), an E3 ubiquitin-protein ligase. The association of lincRNA-p21 and MDM2 releases MDM2 repression of p53, enabling p53 to interact with p300 and to bind to the promoters/enhancers of its target genes. Finally, we show that lincRNA-p21 expression is decreased in patients with coronary artery disease. CONCLUSIONS: Our studies identify lincRNA-p21 as a novel regulator of cell proliferation and apoptosis and suggest that this lncRNA could serve as a therapeutic target to treat atherosclerosis and related cardiovascular disorders.


Assuntos
Apoptose/genética , Macrófagos/citologia , Músculo Liso Vascular/citologia , Neointima/genética , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Humanos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/fisiologia , Neointima/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética
7.
Clin Sci (Lond) ; 129(3): 259-69, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25783200

RESUMO

We set out to investigate whether and how SRY (sex-determining region, Y) DNAs in plasma EVs (extracellular vesicles) is involved in the pathogenesis of atherosclerosis. PCR and gene sequencing found the SRY gene fragment in plasma EVs from male, but not female, patients; EVs from male patients with CAD (coronary artery disease) had a higher SRY GCN (gene copy number) than healthy subjects. Additional studies found that leucocytes, the major source of plasma EVs, had higher SRY GCN and mRNA and protein expression in male CAD patients than controls. After incubation with EVs from SRY-transfected HEK (human embryonic kidney)-293 cells, monocytes (THP-1) and HUVECs (human umbilical vein endothelial cells), which do not endogenously express SRY protein, were found to express newly synthesized SRY protein. This resulted in an increase in the adherence factors CD11-a in THP-1 cells and ICAM-1 (intercellular adhesion molecule 1) in HUVECs. EMSA showed that SRY protein increased the promoter activity of CD11-a in THP-1 cells and ICAM-1 in HUVECs. There was an increase in THP-1 cells adherent to HUVECs after incubation with SRY-EVs. SRY DNAs transferred from EVs have pathophysiological significance in vivo; injection of SRY EVs into ApoE-/- (apolipoprotein-knockout) mice accelerated atherosclerosis. The SRY gene in plasma EVs transferred to vascular endothelial cells may play an important role in the pathogenesis of atherosclerosis; this mechanism provides a new approach to the understanding of inheritable CAD in men.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Leucócitos/metabolismo , Proteína da Região Y Determinante do Sexo/metabolismo , Animais , Adesão Celular , Células Cultivadas , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Espaço Extracelular/metabolismo , Humanos , Leucócitos/citologia , Masculino , Camundongos , Proteína da Região Y Determinante do Sexo/genética , Molécula 1 de Adesão de Célula Vascular/biossíntese
8.
Clin Exp Hypertens ; 37(4): 288-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25496286

RESUMO

OBJECTIVE: The abnormal migration of vascular smooth muscle cells (VSMCs) has been implicated to contribute to lesion formation in the adult vasculature. The renin-angiotensin-aldosterone system (RAAS) is intensively involved in the pathogenesis of a variety of cardiovascular diseases. There are increasing pieces of evidence for interactions between RAAS and dopamine receptors. We hypothesize that the D3 receptor has an inhibitory effect on angiotensin II (Ang II)/aldosterone-induced VSMC migration. METHOD: In this study, embryonic thoracic aortic smooth muscle cells were cultured. VSMC migration was determined by the Boyden chamber and wound healing assays. RESULTS: VSMC migration was increased by Ang II (10(-10)-10(-7) mol/L) in a concentration-dependent manner, but not by aldosterone (10(-10)-10(-7) mol/L), and a synergistic effect of Ang II (10(-10) mol/L)/aldosterone (10(-10)mol/L) was also observed in VSMC migration. The migratory effects of Ang II alone/with aldosterone were attenuated by the activation of D3 receptors (10(-10)-10(-7) mol/L), although a D3 receptor agonist, PD128907, by itself, had no effect on VSMC migration. The inhibitory effect of the D3 receptor on Ang II/ aldosterone-mediated VSMC migration was blocked by the blocker of PKA (14-22 amide, 10(-7) mol/L), indicating that PKA was involved in the signaling pathway. CONCLUSION: These results indicate that activation of vascular D3 receptors inhibits Ang II/aldosterone-induced VSMC migration through the PKA signal pathway, which may be important in the regulation of vascular remodeling.


Assuntos
Aldosterona/farmacologia , Angiotensina II/farmacologia , Movimento Celular/efeitos dos fármacos , Hipertensão/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Receptores de Dopamina D3/metabolismo , Aorta Torácica/patologia , Células Cultivadas , Sinergismo Farmacológico , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Clin Exp Hypertens ; 37(3): 207-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25051229

RESUMO

OBJECTIVE: Renal denervation is a novel method for hypertension treatment. In this study, we aimed to investigate the safety and efficacy of radiofrequency ablation (RFA) at ablation temperatures of 45 °C or 50 °C and its possible mechanisms. METHODS: A hypertensive canine model was established by abdominal aortic constriction in 20 healthy hybrid dogs. These dogs were then randomly assigned to the treatment and the control groups, with dogs in the treatment group further randomly assigned to receive RFA at ablation temperatures of 45 °C or 50 °C. In the treatment group, RFA was performed at 1 month after modeling; renal angiography was performed at 2 months after ablation. The arterial vessels of the dogs were examined histologically with hematoxylin and eosin staining. Changes in blood pressure in the foreleg and whole-body norepinephrine spillover rate were also assessed. RESULTS: No arterial stenosis, dissection, thrombosis or other abnormalities were detected in the treated vessels by renal angiography, yet histology results showed minimal to mild renal arterial injury. Renal denervation resulted in a marked decrease in the whole-body norepinephrine spillover rate (p < 0.05) in addition to significantly reducing blood pressure (p < 0.05), with no significant differences detected between the 45 °C and 50 °C subgroups for both (p > 0.05). CONCLUSION: Renal denervation can be performed without acute major adverse events, using catheter-based RFA with temperature control. The procedure was feasible in reducing blood pressure by at least partially inhibiting sympathetic drive and systemic sympathetic outflow.


Assuntos
Ablação por Cateter/métodos , Hipertensão/terapia , Rim , Simpatectomia/métodos , Animais , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Cães , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/inervação , Rim/patologia , Monitorização Fisiológica/métodos , Norepinefrina/análise , Radiografia , Artéria Renal/diagnóstico por imagem , Temperatura , Resultado do Tratamento
10.
Am J Physiol Renal Physiol ; 306(6): F588-96, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24500688

RESUMO

The dopaminergic and sympathetic systems interact to regulate blood pressure. Our previous studies showed regulation of α1-adrenergic receptor function by D1-like dopamine receptors in vascular smooth muscle cells. Because renalase could regulate circulating epinephrine levels and dopamine production in renal proximal tubules (RPTs), we tested the hypothesis that D1-like receptors regulate renalase expression in kidney. The effect of D1-like receptor stimulation on renalase expression and function was measured in immortalized RPT cells from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs). We found that the D1-like receptor agonist fenoldopam (10(-7)-10(-5) mol/l) increased renalase protein expression and function in WKY RPT cells but decreased them in SHR cells. Fenoldopam also increased renalase mRNA levels in WKY but not in SHR cells. In contrast, fenoldopam increased the degradation of renalase protein in SHR cells but not in WKY cells. The regulation of renalase by the D1-like receptor was mainly via the D5 receptor because silencing of the D5 but not D1 receptor by antisense oligonucleotides blocked the stimulatory effect of the D1-like receptor on renalase expression in WKY cells. Moreover, inhibition of PKC, by the PKC inhibitor 19-31, blocked the stimulatory effect of fenoldopam on renalase expression while stimulation of PKC, by a PKC agonist (PMA), increased renalase expression, indicating that PKC is involved in the process. Our studies suggest that the D5 receptor positively regulates renalase expression in WKY but not SHR RPT cells; aberrant regulation of renalase by the D5 receptor may be involved in the pathogenesis of hypertension.


Assuntos
Túbulos Renais Proximais/efeitos dos fármacos , Monoaminoxidase/biossíntese , Receptores de Dopamina D5/fisiologia , Animais , Células Cultivadas , Fenoldopam/farmacologia , Túbulos Renais Proximais/metabolismo , Masculino , Proteína Quinase C/fisiologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores de Dopamina D1/agonistas
11.
Clin Exp Hypertens ; 36(3): 140-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23713966

RESUMO

OBJECTIVE: Proliferation of vascular smooth muscle cells (VSMCs) participates in the pathogenesis and development of cardiovascular diseases, including essential hypertension and atherosclerosis. Our previous study found that stimulation of D1-like dopamine receptors inhibited insulin-induced proliferation of VSMCs. Insulin-like growth factor-1 (IGF-1) and insulin share similar structure and biological effect. However, whether or not there is any effect of D1-like receptors on IGF-1-induced proliferation of VSMCs is not known. Therefore, we investigated the inhibitory effect of D1-like dopamine receptors on the IGF-1-induced VSMCs proliferation in this study. METHOD: VSMC proliferation was determined by [(3)H]-thymidine incorporation, the uptake of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and cell number. Phosphorylated/non-phosphorylated IGF-1 receptor, Akt, mTOR and p70S6K expressions were determined by immunoblotting. The oligodeoxynucleotides were transfected to A10 cells to identify the effect of D1 and D5 receptors, respectively. RESULTS: IGF-1 increased the proliferation of VSMCs, while in the presence of fenoldopam, IGF-1-mediated stimulatory effect was reduced. Use of either antisense for D1 or D5 receptor partially inhibited the fenoldopam-induced antiproliferation effect of VSMCs. Use of both D1 and D5 receptor antisenses completely blocked the inhibitory effect of fenoldopam. In the presence of PI3k and mTOR inhibitors, the IGF-1-mediated proliferation of VSMCs was blocked. Moreover, IGF-1 increased the phosphorylation of PI3k and mTOR. The inhibitory effect of fenoldopam on VSMC proliferation might be due to the inhibition of IGF-1 receptor expression and IGF-1 phosphorylation, because in the presence of fenoldopam, the stimulatory effect of IGF-1 on phosphorylation of IGF-1 receptor, PI3k and mTOR is reduced, the IGF-1 receptor expression was reduced in A10 cells. CONCLUSION: Activation of the D1-like receptors suppressed the proliferative effect of IGF-1 in A10 cells via the inhibition of the IGF-1R/Akt/mTOR/p70S6K pathway and downregulated the expression of IGF-1 receptor.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Receptores de Dopamina D1/metabolismo , Animais , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Ratos
12.
Cardiol Discov ; 3(1): 24-29, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36969984

RESUMO

Dopamine, via its receptors, plays a vital role in the maintenance of blood pressure by modulating renal sodium transport. However, the role of the D4 dopamine receptor (D4 receptor) in renal proximal tubules (PRTs) is still unclear. This study aimed to verify the hypothesis that activation of D4 receptor directly inhibits the activity of the Na+-K+-ATPase (NKA) in RPT cells. Methods: NKA activity, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) levels were measured in RPT cells treated with the D4 receptor agonist PD168077 and/or the D4 receptor antagonist L745870, the NO synthase inhibitor NG-nitro-L-arginine-methyl ester (L-NAME) or the soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ). Total D4 receptor expression and its expression in the plasma membrane were investigated by immunoblotting in RPT cells from Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Results: Activation of D4 receptors with PD168077, inhibited NKA activity in RPT cells from WKY rats in a concentration- and time-dependent manner. The inhibitory effect of PD168077 on NKA activity was prevented by the addition of the D4 receptor antagonist L745870, which by itself had no effect. The NO synthase inhibitor L-NAME and the soluble guanylyl cyclase inhibitor ODQ, which by themselves had no effect on NKA activity, eliminated the inhibitory effect of PD168077 on NKA activity. Activation of D4 receptors also increased NO levels in the culture medium and cGMP levels in RPT cells. However, the inhibitory effect of D4 receptors on NKA activity was absent in RPT cells from SHRs, which could be related to decreased plasma membrane expression of D4 receptors in SHR RPT cells. Conclusions: Activation of D4 receptors directly inhibits NKA activity via the NO/cGMP signaling pathway in RPT cells from WKY rats but not SHRs. Aberrant regulation of NKA activity in RPT cells may be involved in the pathogenesis of hypertension.

13.
Bosn J Basic Med Sci ; 22(5): 772-783, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35490365

RESUMO

The regenerative potential of cardiomyocytes in adult mammals is limited. Previous studies reported that cardiomyocyte proliferation is suppressed by AMP-activated protein kinase (AMPK). The role of liver kinase B1 (LKB1), as the major upstream kinase for AMPK, on cardiomyocyte proliferation is unclear. In this study, we found that the LKB1 levels rapidly increased after birth. With loss- and gain-of-function study, our data demonstrated that LKB1 levels negatively correlate with cardiomyocyte proliferation. We next identified Yes-associated protein (YAP) as the downstream effector of LKB1 using high-throughput RNA sequencing. Our results also demonstrated that AMPK plays an essential role in Lkb1 knockdown-induced cardiomyocyte proliferation. Importantly, deactivated AMPK abolished the LKB1-mediated regulation of YAP nuclear translocation and cardiomyocyte proliferation. Thus, our findings suggested the role of LKB1-AMPK-YAP axis during cardiomyocyte proliferation, which could be used as a potential target for inducing cardiac regeneration after injury.


Assuntos
Proteínas Quinases Ativadas por AMP , Miócitos Cardíacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Mamíferos/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Sinalização YAP
15.
Kidney Blood Press Res ; 34(2): 75-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21228598

RESUMO

BACKGROUND: Activation of renal D3 receptor induces natriuresis and diuresis in Wistar-Kyoto (WKY) rats; in the presence of ETB receptor antagonist, the natriuretic effect of D3 receptor in WKY rats is reduced. We hypothesize that ETB receptor activation may regulate D3 receptor expression in renal proximal tubule (RPT) cells from WKY rats, which is impaired in RPT cells from spontaneously hypertensive rats (SHRs). METHODS: D3 receptor expression was determined by immunoblotting; the D3/ETB receptor linkage was checked by coimmunoprecipitation; Na(+)-K(+)-ATPase activity was determined as the rate of inorganic phosphate released in the presence or absence of ouabain. RESULTS: In RPT cells from WKY rats, the ETB receptor agonist BQ3020 increased D3 receptor protein. In contrast, in RPT cells from SHRs, BQ3020 did not increase D3 receptor. There was coimmunoprecipitation between D3 and ETB receptors in RPT cells from WKY and SHRs. Activation of ETB receptor increased D3/ETB coimmunoprecipitation in RPT cells from WKY rats, but not from SHRs. The basal levels of D3/ETB receptor coimmunoprecipitation were greater in RPT cells from WKY rats than in those from SHRs. Stimulation of D3 receptor inhibited Na(+)-K(+)-ATPase activity, which was augmented by the pretreatment with the ETB receptor agonist BQ3020 in WKY RPT cells, but not in SHR RPT cells. CONCLUSION: ETB receptors regulate and physically interact with D3 receptors differently in WKY rats and SHRs. The impaired natriuretic effect in SHRs may be, in part, related to impaired ETB and D3 receptor interactions.


Assuntos
Hipertensão/metabolismo , Túbulos Renais Proximais/metabolismo , Receptor de Endotelina B/metabolismo , Receptores de Dopamina D3/metabolismo , Animais , Linhagem Celular , Imunoprecipitação , Túbulos Renais Proximais/citologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , ATPase Trocadora de Sódio-Potássio/metabolismo
16.
Oxid Med Cell Longev ; 2021: 2999296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712381

RESUMO

Calorie restriction (CR) extends lifespan and increases resistance to multiple forms of stress, including renal ischemia-reperfusion (I/R) injury. However, whether CR has protective effects on contrast-induced nephropathy (CIN) remains to be determined. In this study, we evaluated the therapeutic effects of CR on CIN and investigated the potential mechanisms. CIN was induced by the intravenous injection of iodinated contrast medium (CM) iopromide (1.8 g/kg) into Sprague Dawley rats with normal food intake or 40% reduced food intake, 4 weeks prior to iopromide administration. We found that CR was protective of CIN, assessed by renal structure and function. CM increased apoptosis, reactive oxygen species (ROS), and inflammation in the renal outer medulla, which were decreased by CR. The silent information regulator 1 (SIRT1) participated in the protective effect of CR on CIN, by upregulating glutathione peroxidase 4 (GPX4), a regulator of ferroptosis, because this protective effect was reversed by EX527, a specific SIRT1 antagonist. Our study showed that CR protected CIN via SIRT1/GPX4 activation. CR may be used to mitigate CIN.


Assuntos
Restrição Calórica , Nefropatias/prevenção & controle , Rim/enzimologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Sirtuína 1/metabolismo , Animais , Apoptose , Meios de Contraste , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Ferroptose , Mediadores da Inflamação/metabolismo , Iohexol/análogos & derivados , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/enzimologia , Nefropatias/patologia , Masculino , Estresse Oxidativo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
17.
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue ; 22(11): 663-5, 2010 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-21122200

RESUMO

OBJECTIVE: To investigate the effects of lipid-modulation and antiplatelet treatment on the expression of endothelial lipase (EL) of patients with coronary artery disease (CAD), and investigate the role of EL in the development of CAD. METHODS: One hundred and fifty-seven cases were divided into three groups according to clinical manifestations and the results of coronary artery angiography: control group (n=41) with more than one risk factors of CAD and the vessel lesions was <30%; stable angina pectoris (SAP) group (n=55); acute coronary syndrome (ACS) group (n=61). The EL positive cell rate was measured 2 weeks after cessation of lipid-modulation and aspirin treatment, and 6 months after treatment with simvastatin and/or aspirin. The drug was ceased for the complications or not tolerance for the treatment. RESULTS: Except the patients in control group with aspirin treatment, the EL positive cell rate was significantly decreased among other groups [control group with simvastatin: (3.93±0.87)% vs. (5.28±1.05)%, SAP group: (8.16±2.11)% vs. (15.12±2.53)%, ACS group: (13.93±3.22)% vs. (38.44±4.36)%; SAP group with aspirin: (10.57±4.07)% vs. (14.66±2.29)%, ACS group: (18.28±5.14)% vs. (40.27±3.96)%; control group with aspirin and simvastatin: (3.13±0.87)% vs. (5.33±1.25)%, SAP group: (5.68±2.20)% vs. (14.89±2.15)%, ACS group: (7.81±3.96)% vs. (39.27±5.17)%, P<0.05 or P<0.01]. CONCLUSION: The treatment with lipid-modulation and/or antiplatelet drug may significantly decrease the expression of EL, implying that EL participates in the progression of CAD.


Assuntos
Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/metabolismo , Hipolipemiantes/uso terapêutico , Lipase/metabolismo , Sinvastatina/uso terapêutico , Adulto , Idoso , Plaquetas , Feminino , Humanos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade
18.
Life Sci ; 221: 72-82, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738868

RESUMO

AIMS: The proliferation of VSMCs is the pathologic basis for intimal hyperplasia after angioplasty in diabetic patients. Translocator protein (TSPO), located in the outer mitochondrial membrane, has been found to regulate redox intermediate components in cell dysfunction. We hypothesized that TSPO may regulate VSMC proliferation and migration, and be involved in the intimal hyperplasia after angioplasty in diabetes. MATERIALS AND METHODS: Cell proliferation was measured by cell counting and MTT assays. Cell migration was measured by Transwell® and scratch-wound assays. TSPO expression in arteries of rats and high glucose-treated A10 cells were detected by immunoblotting and immunofluorescence staining. Neointimal formation of carotid artery was induced by balloon injury in type 2 diabetic rat. KEY FINDINGS: TSPO expression was increased in the arterial samples from diabetic rats and A10 cells treated with high glucose. Down-regulation of TSPO expression by siRNA decreased the high-glucose-induced VSMC proliferation and migration in A10 cells. This phenomenon could be simulated by using TSPO ligands, PK 11195 and Ro5-4864. cGMP/PKG signals were involved in the TSPO ligand action, since in the presence of cGMP or PKG inhibitor ODQ or KT5823 respectively, the effect of PK 11195 on VSMC proliferation was blocked. Furthermore, PK 11195 significantly inhibited neointimal formation by the inhibition of VSMC proliferation. SIGNIFICANCE: This study suggests that TSPO inhibition suppresses the proliferation and migration of VSMCs induced by hyperglycemia, consequently, preventing atherosclerosis and restenosis after angioplasty in diabetic conditions. TSPO may be a potential therapeutic target to reduce arterial remodeling induced by angioplasty in diabetes.


Assuntos
Proteínas de Transporte/metabolismo , Hiperplasia/metabolismo , Receptores de GABA-A/metabolismo , Animais , Benzodiazepinonas/farmacologia , Artérias Carótidas/patologia , Proteínas de Transporte/fisiologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Hiperplasia/prevenção & controle , Isoquinolinas/farmacologia , Ligantes , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/fisiologia
19.
Nat Commun ; 10(1): 4659, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604915

RESUMO

MG53 is a muscle-specific TRIM-family protein that presides over the cell membrane repair response. Here, we show that MG53 present in blood circulation acts as a myokine to facilitate tissue injury-repair and regeneration. Transgenic mice with sustained elevation of MG53 in the bloodstream (tPA-MG53) have a healthier and longer life-span when compared with littermate wild type mice. The tPA-MG53 mice show normal glucose handling and insulin signaling in skeletal muscle, and sustained elevation of MG53 in the bloodstream does not have a deleterious impact on db/db mice. More importantly, the tPA-MG53 mice display remarkable dermal wound healing capacity, enhanced muscle performance, and improved injury-repair and regeneration. Recombinant human MG53 protein protects against eccentric contraction-induced acute and chronic muscle injury in mice. Our findings highlight the myokine function of MG53 in tissue protection and present MG53 as an attractive biological reagent for regenerative medicine without interference with glucose handling in the body.


Assuntos
Proteínas de Membrana/fisiologia , Cicatrização , Animais , Cálcio/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/metabolismo , Proteínas de Membrana/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Regeneração/genética , Biologia de Sistemas
20.
Kidney Int ; 74(6): 750-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18547994

RESUMO

Dopaminergic and endothelin systems participate in the control blood pressure by regulating sodium transport in the renal proximal tubule. Disruption of either the endothelin B receptor (ETB) or D(3) dopamine receptor gene in mice produces hypertension. To examine whether these two receptors interact we studied the Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats by selectively infusing reagents into the right kidney of anesthetized rats. The D(3) receptor agonist (PD128907) caused natriuresis in WKY rats which was partially blocked by the ETB receptor antagonist. In contrast, PD128907 blunted sodium excretion in the SHRs. We found using laser confocal microscopy that the ETB receptor was mainly located in the cell membrane in control WKY cells. Treatment with the D(3) receptor antagonist caused its internalization into intracellular compartments that contained the D(3) receptors. Combined use of D(3) and ETB antagonists failed to internalize ETB receptors in cells from WKY rats. In contrast in SHR cells, ETB receptors were found mainly in internal compartments under basal condition and thus were likely prevented from interacting with the agonist-stimulated, membrane-bound D(3) receptors. Our studies suggest that D(3) receptors physically interact with proximal tubule ETB receptors and that the blunted natriuretic effect of dopamine in SHRs may be explained, in part, by abnormal D(3)/ETB receptor interactions.


Assuntos
Rim/metabolismo , Natriurese , Receptor de Endotelina B/metabolismo , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/metabolismo , Animais , Membrana Celular/química , Endocitose , Antagonistas do Receptor de Endotelina B , Túbulos Renais Proximais/química , Natriurese/efeitos dos fármacos , Ligação Proteica , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor de Endotelina B/análise , Receptores de Dopamina D3/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA