Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(11): 4168-4173, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33705660

RESUMO

1,3-Dienes are readily available feedstocks that are widely used in the laboratory and industry. However, the potential of converting 1,3-dienes into value-added products, especially chiral products, has not yet been fully exploited. By synergetic photoredox/copper catalysis, we achieve the first visible-light-induced, enantioselective carbocyanation of 1,3-dienes by using carboxylic acid derivatives and trimethylsilyl cyanide. Under mild and neutral conditions, a diverse range of chiral allyl cyanides are produced in generally good efficiency and with high enantioselectivity from bench-stable and user-safe chemicals. Moreover, preliminary results also confirm that this success can be expanded to 1,3-enynes and the four-component carbonylative carbocyanation of 1,3-dienes and 1,3-enynes.

2.
J Org Chem ; 85(3): 1484-1494, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31789513

RESUMO

Among various peptide modification strategies, thioamide substitution by replacing the carbonyl oxygen atom of an amide bond with a sulfur atom constitutes an invaluable tool for chemical biology, for use in peptide drug discovery and protein structure-function studies. However, the thioamide substitution effect has not been well studied because of the lack of synthetic methods for site-specifically incorporating a thioamide bond into a peptide backbone, particularly introducing multiple thioamide substitutions into peptide on a solid support. Herein, we report a highly efficient method for incorporating a thioamide bond into the peptide backbone in a site-specific manner by employing α-thioacyloxyenamides, which are formed from the addition of N-protected monothioamino acids and ynamides, as novel thioacylating reagents in solid phase peptide synthesis. This method is amenable for 19 of 20 proteinogenic amino acids, His being the exception. One to multiple thioamide substitutions could be incorporated into a growing peptide with no epimerization or a low level of epimerization. By using this method, a fully thioamide-substituted hexapeptide containing up to five continuous thioamide bonds could be synthesized smoothly. This synthetic methodology will spur the application of the thioamide substitution tool for protein engineering and peptide drug discovery.


Assuntos
Técnicas de Síntese em Fase Sólida , Tioamidas , Amidas , Peptídeos , Engenharia de Proteínas
3.
Chemistry ; 22(3): 911-5, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26604181

RESUMO

Reaction between nitrogen-centered radicals and unsaturated C-C bonds is an effective synthetic strategy for the construction of nitrogen-containing molecules. Although the reactions between nitrogen-centered radicals and alkenes have been studied extensively, their counterpart reactions with alkynes are extremely rare. Herein, the first example of reactions between azidyl radicals and alkynes is described. This reaction initiated an efficient cascade reaction involving inter-/intramolecular radical homolytic addition toward a C-C triple bond and a hydrogen-atom transfer step to offer a straightforward approach to NH-1,2,3-triazoles under mild reaction conditions. Both the internal and terminal alkynes work well for this transformation and some heterocyclic substituents on alkynes are compatible. This mechanistically distinct strategy overcomes the inherent limitations associated with azide anion chemistry and represents a rare example of reactions between a nitrogen-centered radicals and alkynes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA