Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Environ Manage ; 352: 120013, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38211426

RESUMO

Preserving the abundance and stocking of oaks (Quercus spp.) has become increasingly challenging in temperate hardwood forests of the eastern US in recent decades due to a remarkable shift in dominance to mesophytic species (e.g., red maple Acer rubrum). Studies have shown that efforts to sustain oaks while restraining maples yield limited success. Given that a significant portion of forestlands in the eastern U.S. are privately owned, it is critical to assess whether current forest management on cross-ownership forests can achieve those objectives. However, such assessments are rare. In this study, we employed a landscape modeling approach to investigate the long-term outcomes (i.e., 150-year forest composition and structure) of business-as-usual management and alternative management in a large, temperate hardwood forest landscape in Ohio, US. The business-as-usual management continues the current existing management practices, whereas the alternative management increases the pace and scale of forest management on both private and public lands to favor oaks. We compared the basal area and relative dominance for oaks (including Q. alba, Q. coccinea, Q. prinus, Q. rubra, and Q. velutina) and maples (including A. rubrum, A. saccharinum, and A. saccharum). Our results demonstrate that the implementation of business-as-usual management practices on both private and public lands may not effectively ensure the long-term sustainability of oak populations, but instead promote the proliferation of maple species over time. By contrast, alternative management on both private and public lands can effectively sustain oaks across a range of diameter classes while mitigating the growth of large, dominant maples. Our study emphasizes the influential role of private lands in driving oak-maple dynamics at the regional scale, as they can generate significant regional effects even when public lands continue with their business-as-usual management practices. Starting conditions based on landownership are crucial considerations for understanding these dynamics over time.


Assuntos
Quercus , Conservação dos Recursos Naturais , Florestas , Ohio , Comércio , Árvores
2.
Glob Chang Biol ; 29(4): 1160-1177, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349470

RESUMO

Mounting evidence suggests that climate change will cause shifts of tree species range and abundance (biomass). Abundance changes under climate change are likely to occur prior to a detectable range shift. Disturbances are expected to directly affect tree species abundance and composition, and could profoundly influence tree species spatial distribution within a geographical region. However, how multiple disturbance regimes will interact with changing climate to alter the spatial distribution of species abundance remains unclear. We simulated such forest demographic processes using a forest landscape succession and disturbance model (LANDIS-II) parameterized with forest inventory data in the northeastern United States. Our study incorporated climate change under a high-emission future and disturbance regimes varying with gradients of intensities and spatial extents. The results suggest that disturbances catalyze changes in tree species abundance and composition under a changing climate, but the effects of disturbances differ by intensity and extent. Moderate disturbances and large extent disturbances have limited effects, while high-intensity disturbances accelerate changes by removing cohorts of mid- and late-successional species, creating opportunities for early-successional species. High-intensity disturbances result in the northern movement of early-successional species and the southern movement of late-successional species abundances. Our study is among the first to systematically investigate how disturbance extent and intensity interact to determine the spatial distribution of changes in species abundance and forest composition.


Assuntos
Mudança Climática , Árvores , Biomassa , Florestas , New England
3.
J Environ Manage ; 335: 117497, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36812687

RESUMO

Climate change and forest management practices influence forest productivity and carbon budgets, and understanding their interactions is necessary to develop accurate predictions of carbon dynamics as many countries in the world strive towards carbon neutrality. Here, we developed a model-coupling framework to simulate the carbon dynamics of boreal forests in China. The expected dynamics of forest recovery and change following intense timber harvesting in the recent past and projected carbon dynamics into the future under different climate change scenarios and forest management practices (e.g., restoration, afforestation, tending, and fuel management). We predict that under current management strategies, climate change would lead to increased fire frequency and intensity, eventually shifting these forests from carbon sinks towards being carbon sources. This study suggests that future boreal forest management should be altered to reduce the probability of fire occurrence and carbon losses caused by catastrophic fires through planting deciduous species, mechanical removal, and prescribed fire.


Assuntos
Incêndios , Taiga , Carbono/análise , Florestas , Mudança Climática , China
4.
Environ Monit Assess ; 195(3): 401, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790550

RESUMO

As the Earth's population continuously increase with the passage of time, the demand for agricultural raw material for human need increases. It is critical to maintaining updated and accurate information about the dynamics and properties of the world agricultural systems. As cash crop, the updated information of the spatial distribution of cotton field is necessary to monitor the crop area and growth changes at regional level. We used 8-day enhanced vegetation index (EVI) time series to detect cotton crop area and binomial probabilistic approach to obtain the probability distribution of cotton crop occurrence. We used Gaussian kriging to derive cotton yield inside the detected cotton crop areas through crop reporting data. We also used field data from farmers to validate the cotton yield results. A strong correlation between the MODIS-derived cotton cultivated area and statistical data at the tehsil level were achieved (R2 = 0.84) for all study years (2004-2019). The total accuracy for the cotton crop area detection was 84.6% and yield prediction was 92.1%. Our study presents new approaches to map cotton area and yield, which are applicable to other regions through machine learning.


Assuntos
Tecnologia de Sensoriamento Remoto , Rios , Humanos , Paquistão , Monitoramento Ambiental/métodos , Agricultura/métodos
5.
Glob Chang Biol ; 24(3): 1256-1266, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29080270

RESUMO

Treeline responses to environmental changes describe an important phenomenon in global change research. Often conflicting results and generally too short observations are, however, still challenging our understanding of climate-induced treeline dynamics. Here, we use a state-of-the-art dendroecological approach to reconstruct long-term changes in the position of the alpine treeline in relation to air temperature at two sides in the Changbai Mountains in northeast China. Over the past 160 years, the treeline increased by around 80 m, a process that can be divided into three phases of different rates and drives. The first phase was mainly influenced by vegetation recovery after an eruption of the Tianchi volcano in 1702. The slowly upward shift in the second phase was consistent with the slowly increasing temperature. The last phase coincided with rapid warming since 1985, and shows with 33 m per 1°C, the most intense upward shift. The spatial distribution and age structure of trees beyond the current treeline confirm the latest, warming-induced upward shift. Our results suggest that the alpine treeline will continue to rise, and that the alpine tundra may disappear if temperatures will increase further. This study not only enhances mechanistic understanding of long-term treeline dynamics, but also highlights the effects of rising temperatures on high-elevation vegetation dynamics.


Assuntos
Mudança Climática , Árvores , Tundra , Altitude , China , Ecossistema , Temperatura
6.
J Environ Manage ; 220: 149-162, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29777998

RESUMO

Future urban development and climatic changes are likely to affect hydrologic regimes in many watersheds. Quantifying potential water regime changes caused by these stressors is therefore crucial for enabling decision makers to develop viable environmental management strategies. This study presents an approach that integrates mid-21st century impervious surface growth estimates derived from the Imperviousness Change Analysis Tool with downscaled climate model projections and a hydrologic model Soil and Water Assessment Tool to characterize potential water regime changes in a mixed-use watershed in central Missouri, USA. Results for the climate change only scenario showed annual streamflow and runoff decreases (-10.7% and -9.2%) and evapotranspiration increases (+6.8%), while results from the urbanization only scenario showed streamflow and runoff increases (+3.8% and +9.3%) and evapotranspiration decreases (-2.4%). Results for the combined impacts scenario suggested that climatic changes could have a larger impact than urbanization on annual streamflow, (overall decrease of -6.1%), and could largely negate surface runoff increases caused by urbanization. For the same scenario, climatic changes exerted a stronger influence on annual evapotranspiration than urbanization (+3.9%). Seasonal results indicated that the relative influences of urbanization and climatic changes vary seasonally. Climatic changes most greatly influenced streamflow and runoff during winter and summer, and evapotranspiration during summer. During some seasons the directional change for hydrologic processes matched for both stressors. This work presented a practicable approach for investigating the relative influences of mid-21st century urbanization and climatic changes on the hydrology of a representative mixed-use watershed, adding to a limited body of research on this topic. This was done using a transferrable approach that can be adapted for watersheds in other regions.


Assuntos
Mudança Climática , Urbanização , Abastecimento de Água , Hidrologia , Missouri , Modelos Teóricos , Rios , Movimentos da Água
7.
Sci Total Environ ; 927: 171965, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547979

RESUMO

Snow cover phenology (SCP) strongly affects forest spring phenology (the start of growing season, SOS), but the underlying mechanism of the relationship varies. In this study, we aimed to analyze the relationship between forest SOS and SCP, and investigate the mechanisms about how changes of SCP affect forest SOS. To do so, we extracted forest SOS and SCP from multiple remote sensing datasets and analyzed the spatio-temporal patterns of both in Changbai Mountains (2001-2020). We assessed the relationships between SCP and forest SOS using partial least squares regression analysis and investigated the potential mechanism of SCP changes affecting on forest SOS using path analysis. We found earlier forest SOS (-0.5 days/year), prolonged snow cover duration (SCD, 0.43 day/year), and earlier snow cover end day (SCED, -0.1 days/year) in the region. The results indicated that SCD showed negative influence while SCED showed positive influence on forest SOS in most of the region. Results revealed that the influence of SCP on forest SOS was mainly through altering spring temperature and the dominant path of SCP influencing forest SOS followed hydrothermal gradients. Our study reveals new insights into the influence of changing SCP on forest SOS, which provides the theoretical basis for including SCP in the phenological models.


Assuntos
Florestas , Estações do Ano , Neve , China , Monitoramento Ambiental , Mudança Climática , Árvores
8.
Sci China Life Sci ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733513

RESUMO

Atmospheric vapor pressure deficit (VPD) increases with climate warming and may limit plant growth. However, gross primary production (GPP) responses to VPD remain a mystery, offering a significant source of uncertainty in the estimation of global terrestrial ecosystems carbon dynamics. In this study, in-situ measurements, satellite-derived data, and Earth System Models (ESMs) simulations were analysed to show that the GPP of most ecosystems has a similar threshold in response to VPD: first increasing and then declining. When VPD exceeds these thresholds, atmospheric drought stress reduces soil moisture and stomatal conductance, thereby decreasing the productivity of terrestrial ecosystems. Current ESMs underscore CO2 fertilization effects but predict significant GPP decline in low-latitude ecosystems when VPD exceeds the thresholds. These results emphasize the impacts of climate warming on VPD and propose limitations to future ecosystems productivity caused by increased atmospheric water demand. Incorporating VPD, soil moisture, and canopy conductance interactions into ESMs enhances the prediction of terrestrial ecosystem responses to climate change.

9.
Tree Physiol ; 44(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38769900

RESUMO

The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C, δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 68 years covering a pre-warming period (1951-1984; base period) and a warm period (1985-2018; warm period). We found that white birch but not larch significantly increased their radial growth over the warm period. The increased intrinsic water-use efficiency in both species was mainly driven by elevated Ca but not climate warming. White birch but not larch showed significantly positive correlations between tree-ring δ13C, δ18O and summer maximum temperature as well as vapor pressure deficit in the warm period, suggesting a strong stomatal response in the broad-leaved birch to temperature changes. The climate warming-induced radial growth enhancement in white birch is primarily associated with a conservative water-use strategy. In contrast, larch exhibits a profligate water-use strategy. It implies an advantage for white birch over larch in the warming permafrost regions.


Assuntos
Betula , Larix , Pergelissolo , Água , Larix/crescimento & desenvolvimento , Larix/fisiologia , Betula/crescimento & desenvolvimento , Betula/fisiologia , Água/metabolismo , China , Mudança Climática , Taiga , Aquecimento Global
10.
J Environ Manage ; 115: 42-52, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23246764

RESUMO

Fuel treatment is assumed to be a primary tactic to mitigate intense and damaging wildfires. However, how to place treatment units across a landscape and assess its effectiveness is difficult for landscape-scale fuel management planning. In this study, we used a spatially explicit simulation model (LANDIS) to conduct wildfire risk assessments and optimize the placement of fuel treatments at the landscape scale. We first calculated a baseline burn probability map from empirical data (fuel, topography, weather, and fire ignition and size data) to assess fire risk. We then prioritized landscape-scale fuel treatment based on maps of burn probability and fuel loads (calculated from the interactions among tree composition, stand age, and disturbance history), and compared their effects on reducing fire risk. The burn probability map described the likelihood of burning on a given location; the fuel load map described the probability that a high fuel load will accumulate on a given location. Fuel treatment based on the burn probability map specified that stands with high burn probability be treated first, while fuel treatment based on the fuel load map specified that stands with high fuel loads be treated first. Our results indicated that fuel treatment based on burn probability greatly reduced the burned area and number of fires of different intensities. Fuel treatment based on burn probability also produced more dispersed and smaller high-risk fire patches and therefore can improve efficiency of subsequent fire suppression. The strength of our approach is that more model components (e.g., succession, fuel, and harvest) can be linked into LANDIS to map the spatially explicit wildfire risk and its dynamics to fuel management, vegetation dynamics, and harvesting.


Assuntos
Incêndios , Árvores , China , Conservação dos Recursos Naturais , Agricultura Florestal
11.
Environ Manage ; 52(4): 821-36, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23887487

RESUMO

Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.


Assuntos
Incêndios , Geografia , Plantas , China , Tecnologia de Sensoriamento Remoto
12.
Front Plant Sci ; 13: 929855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720584

RESUMO

Current increases in not only the intensity and frequency but also the duration of drought events could affect the growth, physiology, and mortality of trees. We experimentally studied the effects of drought duration in combination with fertilization on leaf water potential, gas exchange, growth, tissue levels of non-structural carbohydrates (NSCs), tissue NSC consumption over-winter, and recovery after drought release in oak (Quercus petraea) and beech (Fagus sylvatica) saplings. Long drought duration (>1 month) decreased leaf water potential, photosynthesis, and NSC concentrations in both oak and beech saplings. Nitrogen fertilization did not mitigate the negative drought effects on both species. The photosynthesis and relative height increment recovered in the following rewetting year. Height growth in the rewetting year was significantly positively correlated with both pre- and post-winter root NSC levels. Root carbon reserve is critical for tree growth and survival under long-lasting drought. Our results indicate that beech is more sensitive to drought and fertilization than oak. The present study, in a physiological perspective, experimentally confirmed the view that the European beech, compared to oak, may be more strongly affected by future environmental changes.

13.
Tree Physiol ; 42(10): 1943-1956, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35535565

RESUMO

Carbon (C) allocation plays a crucial role for survival and growth of alpine treeline trees, however it is still poorly understood. Using in situ 13CO2 labeling, we investigated the leaf photosynthesis and the allocation of 13C labeled photoassimilates in various tissues (leaves, twigs and fine roots) in treeline trees and low-elevation trees. Non-structural carbohydrate concentrations were also determined. The alpine treeline trees (2000 m. a.s.l.), compared with low-elevation trees (1700 m a.s.l.), did not show any disadvantage in photosynthesis, but the former allocated proportionally less newly assimilated C belowground than the latter. Carbon residence time in leaves was longer in treeline trees (19 days) than that in low-elevation ones (10 days). We found an overall lower density of newly assimilated C in treeline trees. The alpine treeline trees may have a photosynthetic compensatory mechanism to counteract the negative effects of the harsh treeline environment (e.g., lower temperature and shorter growing season) on C gain. Lower temperature at treeline may limit the sink activity and C downward transport via phloem, and shorter treeline growing season may result in early cessation of root growth, decreases sink strength, which all together lead to lower density of new C in the sink tissues and finally limit the growth of the alpine treeline trees.


Assuntos
Altitude , Árvores , Carboidratos , Carbono , Fotossíntese
14.
J Environ Manage ; 92(6): 1618-27, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21324582

RESUMO

Using historical General Land Office record as a reference, this study employed a landscape-scale disturbance and succession model to estimate the future cumulative effects of six alternative management plans on the tree species composition for various physiographic settings for the Mark Twain National Forest in Missouri. The results indicate that over a 200-year horizon, the relative abundance of black oak and pine species groups will decrease and the relative abundance of the white oak species group will increase, regardless of management strategy. General Land Office witness tree records provide a measure of tree species composition in the period from 1800 to 1850, prior to the large-scale influx of European settlers. Compared to the tree species composition described in the General Land Office records, the six contemporary management alternatives considered all would lead to a lower abundance of pine species, a higher abundance of red/black oak species, and a slightly higher abundance of white oak species after 200 years. Impacts of management on tree species composition varied with physiographic settings. The projected relative abundance of pine differed significantly across the five physiographic classes over the first 40 years of the simulation. In the medium term (simulation years 41-100) the projected relative pine abundance differed significantly among only four physiographic classes. In the long term (simulation years 100-200) the projected relative pine abundance differed for only one physiographic class. In contrast, differences among physiographic classes in the relative abundance of black oaks and white oaks increased over time. In general, the expected long-term differences in relative tree species abundance among six proposed alternative management plans are small compared to shifts in tree species composition that have occurred from 1850 to the present.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Agricultura Florestal/história , Agricultura Florestal/métodos , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Conservação dos Recursos Naturais/história , História do Século XIX , Missouri , Dinâmica Populacional , Especificidade da Espécie
15.
Environ Manage ; 48(6): 1136-47, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21452058

RESUMO

Contemporary forest management often consists of multiple objectives, including restoration of human-impacted forested landscapes toward their range of natural variability (RNV) and sustainable levels of timber production. Balancing multiple management objectives is often challenging due to intrinsic conflicts between these objectives and a lack of reference conditions for evaluating the effectiveness of forest restoration efforts. We used a spatially explicit forest landscape model to assess how well a classification-based forest management (CFM) system could achieve multiple objectives in a Korean pine broadleaf mixed forest ecosystem at Changbai Mountain in Northeast China. The CFM system divided the forest landscape into three management areas (Commercial Forest, Special Ecological Welfare Forest, and General Ecological Welfare Forest), each with its own management objectives and prescriptions, but with an overall goal of increasing the ecological and economic sustainability of the entire landscape. The zoning approach adopted in the Chinese CFM system is very similar to the TRIAD approach that is being advocated for managing public forests in Canada. In this study, a natural disturbance scenario and seven harvest scenarios (one identical to the current harvest regime and six alternative scenarios) were simulated to examine how tree species composition, age structure, and timber production at the landscape level can be affected by different strategies under the CFM system. The results indicated that the current forest management regime would not only fail to reach the designated timber production level but also move the forest landscape far away from its RNV. In order to return the currently altered forest landscape to approach its RNV while providing a stable level of timber production over time, harvest intensities should be reduced to a level that is equivalent to the amount of timber removals that would occur under the natural disturbances; and the establishment of forest plantations is also required.


Assuntos
Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Árvores , China , Simulação por Computador , Geografia , Especificidade da Espécie
16.
Environ Manage ; 48(6): 1061-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22075940

RESUMO

With 207 million ha of forest covering 22% of its land area, China ranks fifth in the world in forest area. Rapid economic growth, climate change, and forest disturbances pose new, complex challenges for forest research and management. Progress in meeting these challenges is relevant beyond China, because China's forests represent 34% of Asia's forests and 5% of the worlds' forests. To provide a broader understanding of these management challenges and of research and policies that address them, we organized this special issue on contemporary forest research and management issues in China. At the national level, papers review major forest types and the evolution of sustainable forestry, the development of China's forest-certification efforts, the establishment of a forest inventory system, and achievements and challenges in insect pest control in China. Papers focused on Northern China address historical, social, and political factors that have shaped the region's forests; the use of forest landscape models to assess how forest management can achieve multiple objectives; and analysis and modeling of fuels and fire behavior. Papers addressing Central and South China describe the "Grain for Green" program, which converts low productivity cropland to grassland and woodland to address erosion and soil carbon sequestration; the potential effects of climate change on CO(2) efflux and soil respiration; and relationships between climate and net primary productivity. China shares many forest management and research issues with other countries, but in other cases China's capacity to respond to forest management challenges is unique and bears watching by the rest of the world.


Assuntos
Meio Ambiente , Agricultura Florestal/tendências , China , Mudança Climática , Política Ambiental , Geografia
17.
Environ Manage ; 45(5): 1191-200, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20354853

RESUMO

Forest management often has cumulative, long-lasting effects on wildlife habitat suitability and the effects may be impractical to evaluate using landscape-scale field experiments. To understand such effects, we linked a spatially explicit landscape disturbance and succession model (LANDIS) with habitat suitability index (HSI) models to assess the effects of management alternatives on habitat suitability in a forested landscape of northeastern China. LANDIS was applied to simulate future forest landscape changes under four management alternatives (no cutting, clearcutting, selective cutting I and II) over a 200-year horizon. The simulation outputs were linked with HSI models for three wildlife species, the red squirrel (Sciurus vulgaris), the red deer (Cervus elaphus) and the hazel grouse (Bonasa bonasia). These species are chosen because they represent numerous species that have distinct habitat requirements in our study area. We assessed their habitat suitability based on the mean HSI values, which is a measure of the average habitat quality. Our simulation results showed that no one management scenario was the best for all species and various forest management scenarios would lead to conflicting wildlife habitat outcomes. How to choose a scenario is dependent on the trade-off of economical, ecological and social goals. Our modeling effort could provide decision makers with relative comparisons among management scenarios from the perspective of biodiversity conservation. The general simulation results were expected based on our knowledge of forest management and habitat relationships of the species, which confirmed that the coupled modeling approach correctly simulated the assumed relationships between the wildlife, forest composition, age structure, and spatial configuration of habitat. However, several emergent results revealed the unexpected outcomes that a management scenario may lead to.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Agricultura Florestal/métodos , Agricultura Florestal/normas , Modelos Teóricos , Animais , China , Cervos/crescimento & desenvolvimento , Monitoramento Ambiental , Galliformes/crescimento & desenvolvimento , Dinâmica Populacional , Sciuridae/crescimento & desenvolvimento
18.
Sci Total Environ ; 716: 136534, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32044500

RESUMO

Wildfires, especially those of large size, worsen air quality and alter the carbon cycle through combustion of large quantities of biomass and release of carbon into the atmosphere. The Black Dragon fire, which occurred in 1987 in the boreal forests of China is among the top five of such megafires ever recorded in the world. With over 30 years of accumulation of data and availability of new greenhouse gas emission accounting methods, carbon emissions from this megafire can now be estimated with improved precision and greater spatial resolution. To do this, we combined field and remote sensing data to map four burn severity classes and calculated combustion efficiency in terms of the biomass immediately consumed in the fire. Results of the study showed that 1.30 million hectares burned and 52% of that area burned with high severity. The emitted carbon dioxide equivalents (CO2e), accounted for approximately 10% of total fossil fuel emissions from China in 1987, along with CO (2%-3% of annual anthropogenic CO emissions from China) and non-methane hydrocarbons (NMHC) contributing to the atmospheric pollutants. Our study provides an important basis for carbon emission estimation and understanding the impacts of megafires.

19.
Sci Total Environ ; 725: 138323, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32298892

RESUMO

Regions at high latitudes and high altitudes are undergoing a more pronounced winter warming than spring warming, and such asymmetric warming will affect chilling and forcing processes and thus the spring phenology of plants. We analyzed winter chilling and spring forcing accumulation in relation to the spring phenology of three tree species (Ulmus pumila, Populus simonii, and Syringa oblata) growing in a cold region (CR) compared with trees in a warmer reference region (WR), using the Dynamic Model and the Growing Degree Hour (GDH) model. We tested that forcing rather than chilling affects the spring phenology of trees in CR (hypothesis I), and that trees in CR have both lower mean chilling and forcing temperature and thus longer accumulation periods than trees in WR (hypothesis II). The modeling results confirmed that chilling and forcing occur simultaneously during the early spring when temperature gradually increases. In line with our hypotheses, forcing played a crucial role in spring phenology in CR, but chilling and forcing combined to determine spring phenology in WR. The temperature during the chilling and forcing periods was lower and the accumulation period started earlier and ended later in CR than in WR. Moreover, the chilling accumulation was broken into two periods by the low deep winter temperature in CR, and that interruption will be removed by future strong winter warming. Future asymmetric warming, with a stronger temperature increase in winter than in spring, could decrease the forcing accumulation effects and increase the chilling effects on the spring phenology of plants in CR. This change in the balance between chilling and forcing will lead to a shift in plant phenology, which will further have major impacts on biogeochemical cycles and on ecosystem functions and services.


Assuntos
Ecossistema , Árvores , Mudança Climática , Temperatura Baixa , Estações do Ano , Temperatura
20.
Environ Manage ; 44(2): 312-23, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19488811

RESUMO

To achieve the overall objective of restoring natural environment and sustainable resource usability, each forest management practice effect needs to be predicted using a simulation model. Previous simulation efforts were typically confined to public land. Comprehensive forest management practices entail incorporating interactions between public and private land. To make inclusion of private land into management planning feasible at the regional scale, this study uses a new method of combining Forest Inventory and Analysis (FIA) data with remotely sensed forest group data to retrieve detailed species composition and age information for the Missouri Ozark Highlands. Remote sensed forest group and land form data inferred from topography were integrated to produce distinct combinations (ecotypes). Forest types and size classes were assigned to ecotypes based on their proportions in the FIA data. Then tree species and tree age determined from FIA subplots stratified by forest type and size class were assigned to pixels for the entire study area. The resulting species composition map can improve simulation model performance in that it has spatially explicit and continuous information of dominant and associated species, and tree ages that are unavailable from either satellite imagery or forest inventory data. In addition, the resulting species map revealed that public land and private land in Ozark Highlands differ in species composition and stand size. Shortleaf pine is a co-dominant species in public land, whereas it becomes a minor species in private land. Public forest is older than private forest. Both public and private forests have deviated from historical forest condition in terms of species composition. Based on possible reasons causing the deviation discussed in this study, corresponding management avenues that can assist in restoring natural environment were recommended.


Assuntos
Monitoramento Ambiental/métodos , Comunicações Via Satélite , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA