Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell Mol Life Sci ; 81(1): 429, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382697

RESUMO

The mammalian imprinted Dlk1-Dio3 domain contains multiple lncRNAs, mRNAs, the largest miRNA cluster in the genome and four differentially methylated regions (DMRs), and deletion of maternally expressed RNA within this locus results in embryonic lethality, but the mechanism by which this occurs is not clear. Here, we optimized the model of maternally expressed RNAs transcription termination in the domain and found that the cause of embryonic death was apoptosis in the embryo, particularly in the liver. We generated a mouse model of maternally expressed RNAs silencing in the Dlk1-Dio3 domain by inserting a 3 × polyA termination sequence into the Gtl2 locus. By analyzing RNA-seq data of mouse embryos combined with histological analysis, we found that silencing of maternally expressed RNAs in the domain activated apoptosis, causing vascular rupture of the fetal liver, resulting in hemorrhage and injury. Mechanistically, termination of Gtl2 transcription results in the silencing of maternally expressed RNAs and activation of paternally expressed genes in the interval, and it is the gene itself rather than the IG-DMR and Gtl2-DMR that causes the aforementioned phenotypes. In conclusion, these findings illuminate a novel mechanism by which the silencing of maternally expressed RNAs within Dlk1-Dio3 domain leads to hepatic hemorrhage and embryonic death through the activation of apoptosis.


Assuntos
Apoptose , Proteínas de Ligação ao Cálcio , Iodeto Peroxidase , Fígado , RNA Longo não Codificante , Animais , Camundongos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Fígado/metabolismo , Fígado/patologia , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Apoptose/genética , Feminino , Impressão Genômica/genética , Masculino , Inativação Gênica , Camundongos Endogâmicos C57BL , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Embrião de Mamíferos/metabolismo , Metilação de DNA/genética , Feto/metabolismo , Feto/patologia
2.
Cell Mol Life Sci ; 80(10): 307, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768430

RESUMO

N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification is crucial for mRNA stability and translation efficiency, yet the underlying function in mammalian preimplantation embryos remains unclear. Here, we characterized the ac4C modification landscape in mouse early embryos and found that the majority of embryos deficient in ac4C writer-NAT10 failed to develop into normal blastocysts. Through single-cell sequencing, RNA-seq, acetylated RNA immunoprecipitation combined with PCR (acRIP-PCR), and embryonic phenotype monitoring, Nop2 was screened as a target gene of Nat10. Mechanistically, Nat10 knockdown decreases the ac4C modification on Nop2 mRNA and reduces RNA and protein abundance by affecting the mRNA stability of Nop2. Then, depletion of NOP2 may inhibit the translation of transcription factor TEAD4, resulting in defective expression of the downstream lineage-specific gene Cdx2, and ultimately preventing blastomeres from undergoing the trophectoderm (TE) fate. However, exogenous Nop2 mRNA partially reverses this abnormal development. In conclusion, our findings demonstrate that defective ac4C modification of Nop2 mRNA hinders the morula-to-blastocyst transition by influencing the first cell fate decision in mice.

3.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125754

RESUMO

The Dlk1-Dio3 domain is important for normal embryonic growth and development. The heart is the earliest developing and functioning organ of the embryo. In this study, we constructed a transcriptional termination model by inserting termination sequences and clarified that the lack of long non-coding RNA (lncRNA) expression in the Dlk1-Dio3 domain caused the death of maternal insertion mutant (MKI) and homozygous mutant (HOMO) mice starting from E13.5. Parental insertion mutants (PKI) can be born and grow normally. Macroscopically, dying MKI and HOMO embryos showed phenomena such as embryonic edema and reduced heart rate. Hematoxylin and eosin (H.E.) staining showed thinning of the myocardium in MKI and HOMO embryos. In situ hybridization (IHC) and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) showed downregulation of lncGtl2, Rian, and Mirg expression in MKI and HOMO hearts. The results of single-cell RNA sequencing (scRNA-Seq) analysis indicated that the lack of lncRNA expression in the Dlk1-Dio3 domain led to reduced proliferation of epicardial cells and may be an important cause of cardiac dysplasia. In conclusion, this study demonstrates that Dlk1-Dio3 domain lncRNAs play an integral role in ventricular development.


Assuntos
Proteínas de Ligação ao Cálcio , Regulação da Expressão Gênica no Desenvolvimento , Coração , Iodeto Peroxidase , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , Camundongos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Coração/embriologia , Coração/crescimento & desenvolvimento , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Feminino , Desenvolvimento Embrionário/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proliferação de Células/genética , Embrião de Mamíferos/metabolismo , Proteínas Nucleares
4.
Molecules ; 29(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274957

RESUMO

Psoriasis, an immune-mediated inflammatory skin disorder, seriously affects the quality of life of nearly four percent of the world population. Euphorbia helioscopia L. is the monarch constituent of Chinese ZeQi powder preparation for psoriasis, so it is necessary to illustrate its active ingredients. Thus, twenty-three diterpenoids, including seven new ones, were isolated from the whole herb of E. helioscopia L. Compounds 1 and 2, each featuring a 2,3-dicarboxylic functionality, are the first examples in the ent-2,3-sceo-atisane or the ent-2,3-sceo-abietane family. Extensive spectroscopic analysis (1D, 2D NMR, and HRMS data) and computational methods were used to confirm their structures and absolute configurations. According to the previous study and NMR data from the jatropha diterpenes obtained in this study, some efficient 1H NMR spectroscopic rules for assigning the relative configurations of 3α-benzyloxy-jatroph-11E-ene and 7,8-seco-3α-benzyloxy-jatropha-11E-ene were summarized. Moreover, the hyperproliferation of T cells and keratinocytes is considered a key pathophysiology of psoriasis. Anti-proliferative activities against induced T/B lymphocytes and HaCaT cells were tested, and IC50 values of some compounds ranged from 6.7 to 31.5 µM. Compounds 7 and 11 reduced the secretions of IFN-γ and IL-2 significantly. Further immunofluorescence experiments and a docking study with NF-κB P65 showed that compound 13 interfered with the proliferation of HaCaT cells by inhibiting the NF-κB P65 phosphorylation at the protein level.


Assuntos
Diterpenos , Euphorbia , Psoríase , Euphorbia/química , Humanos , Psoríase/tratamento farmacológico , Psoríase/patologia , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Queratinócitos/efeitos dos fármacos
5.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955961

RESUMO

The Dlk1-Dio3 imprinted domain on mouse chromosome 12 contains three well-characterized paternally methylated differentially methylated regions (DMRs): IG-DMR, Gtl2-DMR, and Dlk1-DMR. These DMRs control the expression of many genes involved in embryonic development, inherited diseases, and human cancer in this domain. The first maternal methylation DMR discovered in this domain was the Meg8-DMR, the targets and biological function of which are still unknown. Here, using an enhancer-blocking assay, we first dissected the functional parts of the Meg8-DMR and showed that its insulator activity is dependent on the CCCTC-binding factor (CTCF) in MLTC-1. Results from RNA-seq showed that the deletion of the Meg8-DMR and its compartment CTCF binding sites, but not GGCG repeats, lead to the downregulation of numerous genes on chromosome 12, in particular the drastically reduced expression of Dlk1 and Rtl1 in the Dlk1-Dio3 domain, while differentially expressed genes are enriched in the MAPK pathway. In vitro assays revealed that the deletion of the Meg8-DMR and CTCF binding sites enhances cell migration and invasion by decreasing Dlk1 and activating the Notch1-Rhoc-MAPK/ERK pathway. These findings enhance research into gene regulation in the Dlk1-Dio3 domain by indicating that the Meg8-DMR functions as a long-range regulatory element which is dependent on CTCF binding sites and affects multiple genes in this domain.


Assuntos
Impressão Genômica , RNA Longo não Codificante , Animais , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Metilação de DNA , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Gravidez , RNA Longo não Codificante/genética
6.
Zhongguo Zhong Yao Za Zhi ; 46(4): 757-761, 2021 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-33645077

RESUMO

This article aims to provide a good experimental method for the study of drug treatment of ulcerative colitis. According to the characteristics of ulcerative colitis's clinical symptoms, common ulcerative colitis animal models were analyzed. Based on the characteristics of clinical symptoms of traditional Chinese medicine and Western medicine for ulcerative colitis disease, the existing commonly used animal models of ulcerative colitis were analyzed to summarize the current matching degree, advantages and disadvantages of the exi-sting animal models of ulcerative colitis and clinical symptoms. At present, studies on ulcerative colitis mainly adopt four types of induction modeling methods, such as immunization, chemical stimulation, compound method and gene model. There are many reported methods of colitis modeling, but no model can reflect the characteristics of clinical symptoms of ulcerative colitis treated with Western or Chinese medicine. This article summarizes the characteristics, clinically relevant symptoms and applicable scope of immunization, chemical stimulation, compound method, and gene model, so as to provide a reliable animal model for subsequent studies of prevention and treatment of colitis.


Assuntos
Charadriiformes , Colite Ulcerativa , Medicina , Animais , China , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Modelos Animais de Doenças , Medicina Tradicional Chinesa
7.
Am J Physiol Endocrinol Metab ; 316(6): E1081-E1092, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964708

RESUMO

Musclin is a muscle-secreted cytokine that disrupts glucose uptake and glycogen synthesis in type 2 diabetes. The purpose of this study was to investigate the mechanisms responsible for the regulation of musclin gene expression in response to treatment with palmitate. RNA sequencing results showed that biological processes activated by palmitate are mainly enriched in endoplasmic reticulum (ER) stress. The protein kinase RNA-like ER kinase (PERK) signaling pathway is involved in the regulation of musclin expression induced by palmitate. Chromatin immunoprecipitation data showed that activating transcription factor 4 (ATF4)-downstream of PERK-bound to the promoter of the C/EBPß gene. Notably, C/EBPß also contains a binding site in the region -94~-52 of the musclin gene promoter. Knockdown or knockout of PERK and ATF4 using short hairpin RNA or CRISPR-Cas9 decreased the expression of C/EBPß and musclin induced by palmitate. Furthermore, knockdown and knockout of C/EBPß alleviated the high expression of musclin in response to treatment with palmitate. Moreover, CRISPR-Cas9 knockout of the region -94~-52 in which C/EBPß binds to the promoter of musclin abrogated the induction of high musclin expression caused by palmitate. Collectively, these findings suggest that treatment with palmitate activates the PERK/ATF4 signaling pathway, which in turn increases the expression of C/EBPß. C/EBPß binds directly to the promoter of the musclin gene and upregulates its expression.


Assuntos
Fator 4 Ativador da Transcrição/efeitos dos fármacos , Proteína beta Intensificadora de Ligação a CCAAT/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/efeitos dos fármacos , Palmitatos/farmacologia , Fatores de Transcrição/efeitos dos fármacos , eIF-2 Quinase/efeitos dos fármacos , Fator 4 Ativador da Transcrição/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , eIF-2 Quinase/metabolismo
8.
Biochem Biophys Res Commun ; 520(3): 619-626, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31623832

RESUMO

Elevated plasma free fatty acid (FFA) levels are associated with insulin resistance and can cause lipotoxicity in skeletal muscles. In response to FFAs, skeletal muscle can secrete a variety of cytokines. Irisin, one such muscle-secreted cytokine, can improve glucose tolerance, glucose uptake, and lipid metabolism. It is produced by the transmembrane protein fibronectin type Ⅲ domain containing 5 (FNDC5) by specific proteases. The purpose of this study was to investigate the regulatory mechanisms of the FNDC5 response to palmitate and their relationships with insulin resistance in C2C12 myotubes. RNA sequencing analysis results from C2C12 myotubes treated with palmitate showed that palmitate could activate the TGF-ß signaling pathway. Palmitate directly affected the expression of Smad3, but not its phosphorylation level, in C2C12 myotubes. Furthermore, knockdown and knockout of Smad3 alleviated the inhibitory effect of palmitate on the expression of FNDC5. In contrast, overexpression of Smad3 aggravated the inhibition of FNDC5 expression. There is a Smad3 binding motif in the -660 bp to -649 bp region of the Fndc5 promoter. CRISPR/Cas9 knockout of this region also alleviated the inhibition of FNDC5 expression in response to palmitate. More importantly, inhibition of FNDC5 expression mediated by Smad3 led to a decrease in insulin sensitivity in C2C12 myotubes. Collectively, these findings suggest that palmitate could induce insulin resistance through Smad3-mediated down-regulation of the Fndc5 gene.


Assuntos
Fibronectinas/metabolismo , Resistência à Insulina/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Ácido Palmítico/metabolismo , Proteína Smad3/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Fibronectinas/antagonistas & inibidores , Fibronectinas/genética , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Ácido Palmítico/farmacologia , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/genética , Fator de Crescimento Transformador beta/metabolismo
9.
Mol Carcinog ; 58(6): 957-966, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30693981

RESUMO

Sporadic colorectal cancer (sCRC) is one of the leading causes of cancer death worldwide. As a highly heterogeneous complex disease, the currently reported classical genetic markers for sCRC, including APC, KRAS, BRAF, and TP53 gene mutations and epigenetic alterations, can explain only some sCRC patients. Here, we first reported a deleterious c.551C>T mutation in SARDH in sCRC. SARDH was identified as a novel tumor suppressor gene and was abnormally decreased in sCRC at both the transcriptional and the translational level. SARDH mRNA levels were also down-regulated in oesophageal cancer, lung cancer, liver cancer, and pancreatic cancer in the TCGA database. SARDH overexpression inhibited the proliferation, migration, and invasion of CRC cell lines, whereas its depletion improved these processes. SARDH overexpression was down-regulated in multiple pathways, especially in the chemokine pathway. The SARDH transcript level was positively correlated with the methylation states of CXCL1 and CCL20. Therefore, we concluded that SARDH depletion is involved in the development of sCRC.


Assuntos
Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica/métodos , Mutação Puntual , Sarcosina Desidrogenase/genética , Sarcosina Desidrogenase/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiocina CCL20/genética , Quimiocina CXCL1/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metilação de DNA , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Splicing de RNA , Sequenciamento do Exoma
10.
J Biochem Mol Toxicol ; 33(6): e22308, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30770602

RESUMO

Mutations in transforming growth factor beta receptor II (TGFBR2) are detected in up to 30% of overall colorectal cancer (CRC). Dysregulation of some microRNAs participated in the CRC pathogenesis. In this study, we used the gene ontology analyses, the Kyoto Encyclopedia of Genes and Genomes pathway analyses and gene set enrichment analysis to indicate that miR-3191 was involved in the regulation of transforming growth factor beta (TGF-BETA) signal pathway in CRC. These bioinformatics results were supported by data obtained from CRC samples and experiments in vitro. The luciferase reporter assay was used to confirm that miR-3191 modulates TGF-BETA signal pathway by targeting TGFBR2. By transwell migration and invasion assays, we showed that miR-3191 promoted CRC cell migration and invasion by downregulating TGFBR2. And it may serve as a novel therapeutic strategy for treating CRC patients.


Assuntos
Movimento Celular , Neoplasias Colorretais/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/biossíntese , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Células HeLa , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética
11.
J Sci Food Agric ; 99(10): 4849-4862, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31001831

RESUMO

BACKGROUND: Methionine is an essential sulfur-containing amino acid. To elucidate the influence of l-methionine on activation of the nuclear factor erythroid 2-related factor 2-antioxidant responsive element (Nrf2-ARE) antioxidant pathway to stimulate the endogenous antioxidant activity for depressing reactive oxygen species (ROS)-derived oxidative stress, male Wistar rats were orally administered l-methionine daily for 14 days. RESULTS: With the intake of l-methionine, Nrf2 was activated by l-methionine through depressing Keap1 and Cul3, resulting in upregulation of ARE-driven antioxidant expression (glutamate cysteine ligase catalytic subunit, glutamate cysteine ligase modulatory subunit, glutathione synthase (GS), catalase (CAT), superoxide dismutase (SOD), heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1, glutathione reductase (GR), glutathione S-transferase (GST), glutathione peroxidase (GPx)) with increasing l-methionine availability. Upon activation of Nrf2, glutathione synthesis was increased through upregulated expression of methionine adenosyltransferase, S-adenosylhomocysteine hydrolase, cystathionine ß-synthase, cystathionine γ-lyse, glutamate cysteine ligase (GCL) and GS, while hepatic expressions of methionine sulfoxide reductases (MsrA, MsrB2, MsrB3) and hepatic enzyme activities (CAT, SOD, GCL, GR, GST, GPx) were uniformly stimulated with increasing consumption of l-methionine. As a result, hepatic content of ROS and MDA were effectively reduced by l-methionine intake. CONCLUSION: The present study demonstrates that methionine availability plays a critical role in activation of the Nrf2-ARE pathway to induce an endogenous antioxidant response for depressing ROS-derived oxidative stress, which is primarily attributed to the stimulation of methionine sulfoxide reductase expression and glutathione synthesis. © 2019 Society of Chemical Industry.


Assuntos
Antioxidantes/metabolismo , Metionina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ratos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Glutationa , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/genética , Ratos/genética , Ratos/crescimento & desenvolvimento , Ratos Wistar
12.
Mol Cancer ; 17(1): 176, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572883

RESUMO

BACKGROUND: Although the genetic spectrum of human colorectal cancer (CRC) is mainly characterized by APC, KRAS and TP53 mutations, driver genes in tumor initiation have not been conclusively demonstrated. In this study, we aimed to identify novel markers for CRC. METHODS: We performed exome analysis of sporadic colorectal cancer (sCRC) coding regions to screen loss of function (LoF) mutation genes, and carried out systems-level approaches to confirm top rank gene in this study. RESULTS: We identified loss of BMP5 is an early event in CRC. Deep sequencing identified BMP5 was mutated in 7.7% (8/104) of sCRC samples, with 37.5% truncating mutation frequency. Notably, BMP5 negative expression and its prognostic value is uniquely significant in sCRC but not in other tumor types. Furthermore, BMP5 expression was positively correlated with E-cadherin in CRC patients and its dysregulation play a vital role in epithelial-mesenchymal transition (EMT), thus triggering tumor initiation and development. RNA sequencing identified, independent of BMP/Smads pathway, BMP5 signaled though Jak-Stat pathways to inhibit the activation of oncogene EPSTI1. CONCLUSIONS: Our result support a novel concept that the importance of BMP5 in sCRC. The tumor suppressor role of BMP5 highlights its crucial role in CRC initiation and development.


Assuntos
Proteína Morfogenética Óssea 5/genética , Neoplasias Colorretais/genética , Proteínas Supressoras de Tumor/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica/métodos , Células HCT116 , Células HT29 , Humanos , Mutação/genética , Transdução de Sinais , Proteínas Smad/genética , Transcriptoma
13.
Biochem Biophys Res Commun ; 493(1): 346-351, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28888981

RESUMO

Adiponectin, an adipocytokine produced by adipocytes, functions as an anti-inflammatory and anti-apoptotic substance, while also enhancing insulin sensitivity. Patients or model animals with obesity or diabetes typically present attenuated expression of adiponectin. Moreover, obesity and diabetes are often accompanied with hypoxia in adipose tissue, which may result in endoplasmic reticulum (ER) stress as well as low expression of adiponectin. The purpose of this study was to investigate the specific role of the unfolded protein response (UPR) involved in the low expression of adiponectin induced by hypoxia. Subjecting 3T3-L1 adipocytes to hypoxia significantly reduced adiponectin expression and activated the PERK and IRE1 signaling pathways in a time-dependent manner. The ATF6 signaling pathway showed no obvious changes with hypoxia treatment under a similar time course. Moreover, the down-regulated expression of adiponectin induced by hypoxia was relieved once the PERK and IRE1 signaling pathways were suppressed by the inhibitors GSK2656157 and 4µ8C, respectively. Overall, these data demonstrate that hypoxia can suppress adiponectin expression and activate the PERK and IRE1 signaling pathways in differentiated adipocytes, and this two pathways are involved in the suppression of adiponectin expression induced by hypoxia.


Assuntos
Adiponectina/metabolismo , Proteínas de Membrana/metabolismo , Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/metabolismo , Células 3T3-L1 , Animais , Hipóxia Celular/fisiologia , Regulação para Baixo/fisiologia , Camundongos , Transdução de Sinais/fisiologia
14.
Biol Reprod ; 95(2): 40, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27307076

RESUMO

Imprinted genes play an important role in placental and embryonic development. Abnormalities in their regulation can result in placental and embryonic dysplasia, leading to congenital diseases. The imprinting state, expression, and function of aquaporin-1 (Aqp1) were explored in knockout mice by imprinting analysis, real-time PCR, and immunohistochemistry. In the present study, Aqp1 was identified as a new, imprinted, and placenta-specific maternally expressed gene in the mouse. Compared with wild-type Aqp1(+/+) mice, there was significant placental and embryonic overgrowth in Aqp1(-/+) (loss of maternal allele) and Aqp1(-/-) mice, but not in Aqp1(+/-) (loss of paternal allele) mice at Embryonic Day (E) 12.5-E18.5. In addition, the masses of Postnatal Day 0 (P0) embryos (Aqp1(-/-) and Aqp1(-/+)) were highest among the four types. In Aqp1(-/+) and Aqp1(-/-) mice, phenotypic analysis indicated that the number and branching of blood vessels, as well as the labyrinth area, increased significantly in placentae of E12.5-E18.5 mice. Moreover, there were abnormalities in the placental junctional zone and the labyrinthine zone at E15.5. Quantitative analysis showed that Aqp1 expression decreased significantly in the placentae of Aqp1(-/+) and Aqp1(-/-) mice at E15.5, and that the AQP1 protein expression signals were detected weakly in the decidual and spongioblast layers. Our results demonstrate that Aqp1 is maternally expressed in the placenta, and that its deficiency resulted in placental abnormalities in the mouse. Aqp1 may have a specific inhibitory role in mouse placental development. These results provide new insights for the treatment of diseases relating to placental and embryonic development.


Assuntos
Aquaporina 1/metabolismo , Placenta/metabolismo , Placentação/fisiologia , Animais , Aquaporina 1/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Camundongos , Camundongos Knockout , Gravidez
15.
J Biol Chem ; 289(38): 26630-26641, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25096576

RESUMO

The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7.


Assuntos
Ecdisterona/farmacologia , Proteínas de Insetos/metabolismo , Hormônios Juvenis/fisiologia , Mariposas/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Ecdisterona/fisiologia , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Hormônios Juvenis/farmacologia , Larva/crescimento & desenvolvimento , Metamorfose Biológica/efeitos dos fármacos , Dados de Sequência Molecular , Controle de Pragas , Fosforilação , Filogenia , Transporte Proteico , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica
16.
Biochem Biophys Res Commun ; 467(3): 521-6, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26449458

RESUMO

Musclin is a type of muscle-secreted cytokine and its increased gene expression induces insulin resistance in type 2 diabetes. However, the mechanism underlying increased musclin gene expression is currently unclear. Excessive saturated fatty acids (SFA) can activate the secretion of several muscle-secreted cytokines as well as endoplasmic reticulum (ER) stress pathway, thereby contributing to the development of type 2 diabetes. The purpose of this study was to investigate the mechanisms responsible for the effect of palmitate, the most abundant SFA in the plasma, on the gene expression of musclin in C2C12 myotubes. Treatment of C2C12 myotubes with palmitate or tunicamycin significantly increased the expression of musclin as well as ER stress-related genes, but treatment with oleate did not. Pre-treatment of C2C12 myotubes with 4-phenyl butyrate suppressed the expression of ER stress-related genes, simultaneously, resulting in decreased expression of the musclin gene induced by palmitate or tunicamycin. These results indicate that ER stress is related to palmitate-induced musclin gene expression. Moreover, palmitate-induced musclin gene expression was significantly inhibited in C2C12 myotubes when PERK pathway signaling was suppressed by knockdown of the PERK gene or treatment with GSK2656157, a PERK autophosphorylation inhibitor. However, there was no difference in the palmitate-induced musclin gene expression when IRE1 and ATF6 signaling pathways were suppressed by knockdown of the IRE1 and ATF6 genes. These findings suggest that palmitate increases musclin gene expression via the activation of the PERK signaling pathway in C2C12 myotubes.


Assuntos
Expressão Gênica/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/genética , Ácido Palmítico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , eIF-2 Quinase/metabolismo , Animais , Linhagem Celular , Camundongos , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/metabolismo
17.
Nucleic Acids Res ; 41(22): 10044-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038472

RESUMO

In silico prediction of genomic long non-coding RNAs (lncRNAs) is prerequisite to the construction and elucidation of non-coding regulatory network. Chromatin modifications marked by chromatin regulators are important epigenetic features, which can be captured by prevailing high-throughput approaches such as ChIP sequencing. We demonstrate that the accuracy of lncRNA predictions can be greatly improved when incorporating high-throughput chromatin modifications over mouse embryonic stem differentiation toward adult Cerebellum by logistic regression with LASSO regularization. The discriminating features include H3K9me3, H3K27ac, H3K4me1, open reading frames and several repeat elements. Importantly, chromatin information is suggested to be complementary to genomic sequence information, highlighting the importance of an integrated model. Applying integrated model, we obtain a list of putative lncRNAs based on uncharacterized fragments from transcriptome assembly. We demonstrate that the putative lncRNAs have regulatory roles in vicinity of known gene loci by expression and Gene Ontology enrichment analysis. We also show that the lncRNA expression specificity can be efficiently modeled by the chromatin data with same developmental stage. The study not only supports the biological hypothesis that chromatin can regulate expression of tissue-specific or developmental stage-specific lncRNAs but also reveals the discriminating features between lncRNA and coding genes, which would guide further lncRNA identifications and characterizations.


Assuntos
Encéfalo/metabolismo , Cromatina/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genômica , Modelos Logísticos , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia
18.
J Appl Toxicol ; 35(10): 1122-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25826740

RESUMO

There have been few reports about the possible toxic effects of titanium dioxide (TiO2 ) nanoparticles on the endocrine system. We explored the endocrine effects of oral administration to mice of anatase TiO2 nanoparticles (0, 64 and 320 mg kg(-1) body weight per day to control, low-dose and high-dose groups, respectively, 7 days per week for 14 weeks). TiO2 nanoparticles were characterized by scanning and transmission electron microscopy (TEM) and dynamic light scattering (DLS), and their physiological distribution was investigated by inductively coupled plasma. Biochemical analyzes included plasma glucose, insulin, heart blood triglycerides (TG), free fatty acid (FFA), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and reactive oxygen species (ROS)-related markers (total SOD, GSH and MDA). Phosphorylation of IRS1, Akt, JNK1, and p38 MAPK were analyzed by western blotting. Increased titanium levels were found in the liver, spleen, small intestine, kidney and pancreas. Biochemical analyzes showed that plasma glucose significantly increased whereas there was no difference in plasma insulin secretion. Increased ROS levels were found in serum and the liver, as evidenced by reduced total SOD activity and GSH level and increased MDA content. Western blotting showed that oral administration of TiO2 nanoparticles induced insulin resistance (IR) in mouse liver, shown by increased phosphorylation of IRS1 (Ser307) and reduced phosphorylation of Akt (Ser473). The pathway by which TiO2 nanoparticles increase ROS-induced IR were included in the inflammatory response and phosphokinase, as shown by increased serum levels of TNF-α and IL-6 and increased phosphorylation of JNK1 and p38 MAPK in liver. These results show that oral administration of TiO2 nanoparticles increases ROS, resulting in IR and increasing plasma glucose in mice.


Assuntos
Glicemia/metabolismo , Resistência à Insulina , Nanopartículas Metálicas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Titânio/toxicidade , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Citocinas/sangue , Ingestão de Alimentos/efeitos dos fármacos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Tamanho da Partícula , Fosforilação/efeitos dos fármacos , Distribuição Tecidual , Titânio/farmacocinética
19.
Cell Physiol Biochem ; 33(6): 1899-910, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25011668

RESUMO

BACKGROUND: The chemical chaperone 4-phenylbutyric acid (4-PBA) has been shown to relieve endoplasmic reticulum (ER) stress. Therefore, it improves insulin sensitivity and promotes glucose metabolism in skeletal muscle. Glucose transporter type 4 (GLUT4), as a major glucose transporter protein, plays a central role in glucose metabolism. Until now, it has been unclear whether 4-PBA affects GLUT4 gene expression and thus, contributes to glucose metabolism. METHODS: C2C12 myotubes were treated with 4-PBA, tunicamycin or butyrate and subjected to Western blot and RT-PCR. RESULTS: 4-PBA-treated C2C12 myotubes increased GLUT4 expression and promoted glucose metabolism. Most interestingly, GLUT4 gene expression induced by 4-PBA was not associated with ER stress even in the presence of tunicamycin, an ER stress inducer. Moreover, we also found that 4-PBA inhibited histonedeacetylase 5 (HDAC5) expression in C2C12 myotubes, resulting in hyperacetylation of the histone H3 at the myocyte enhancer factor 2 (MEF2) binding site. This increased the binding of MEF2A to the site on the GLUT4 promoter, resulting in increased GLUT4 expression. CONCLUSIONS: Our data indicate that 4-PBA increases GLUT4 expression by acetylating the MEF2 site to increase the MEF2A binding through a mechanism that involves suppression of the HDAC5 pathway, but without involving ER stress.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Histona Desacetilases/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fenilbutiratos/farmacologia , Acetilação/efeitos dos fármacos , Animais , Western Blotting , Butiratos/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacocinética , Transportador de Glucose Tipo 4/genética , Glicogênio/biossíntese , Histonas/metabolismo , Fatores de Transcrição MEF2/metabolismo , Camundongos , Estrutura Molecular , Fibras Musculares Esqueléticas/metabolismo , Fenilbutiratos/química , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tunicamicina/farmacologia
20.
Mol Genet Genomics ; 289(6): 1225-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25012394

RESUMO

Long non-coding RNAs (lncRNAs) have been studied extensively over the last few years. Liver is an important organ that plays a crucial role in glucose metabolism and homeostasis; however, there are few reports of the identification and functional characterization of lncRNAs with important roles in liver development. Therefore, it is necessary to systematically identify lncRNAs that are involved in liver development. In this paper, we assembled the transcriptome using published RNA-seq data across three mouse liver developmental stages and identified 4,882 putative long intergenic non-coding RNAs (lincRNAs) expressed in at least one of the investigated stages. Combining these with Ensembl lincRNAs, we established a reference catalog of 6,602 transcribed lincRNAs in the mouse liver. We then analyzed all the lincRNAs in this reference catalog systematically and revealed that liver lincRNAs carry different genomic signatures from protein-coding genes, while the putative lincRNAs are generally comparable with known Ensembl lincRNAs. In addition, putative lincRNAs are functionally associated with essential biological processes, including RNA splicing, protein localization and fatty acid metabolic process, implying that they may play an important role in regulating liver development. The validation of selected lincRNAs that are specifically expressed in developing liver tissues further suggested the effectiveness of our approach. Our study shows that lincRNAs that are differentially expressed during three liver developmental stages could have important regulatory roles in liver development. The identified putative lincRNAs are a valuable resource for further functional studies.


Assuntos
Fígado/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Camundongos , Proteínas/genética , Proteínas/metabolismo , RNA Longo não Codificante/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA