RESUMO
In aquatic ectotherms, temperature plays a pivotal role in biological processes and the prevalence of viral diseases; however, the molecular mechanisms underlying these effects are not fully elucidated. In this study, we investigate the impact of elevated temperatures (32°C) on the immune response against white spot syndrome virus (WSSV) in shrimp (Litopenaeus vannamei). Our findings reveal that higher water temperatures, specifically 32°C, significantly inhibit WSSV replication and pathogenicity, thereby enhancing the survival rates of infected shrimp. Through transcriptome analysis and in vivo experiments, we identified heat shock protein 70 (HSP70) as a key factor in this thermal regulation of immunity. Shrimp maintained at 32°C, with silenced HSP70 expression, exhibited increased viral loads and reduced survival, underscoring the crucial protective role of HSP70 against WSSV at elevated temperatures. Our results further uncover the HSP70-Toll4-Dorsal-antimicrobial peptide (AMP) pathway as a key mediator of WSSV resistance at elevated temperatures. This pathway involves the interaction of HSP70 with the Toll4 receptor, resulting in the phosphorylation of Dorsal and the consequent modulation of expression of AMPs such as the anti-LPS factor (ALF) and lysozyme (LYZ) families. Taken together, these findings advance our understanding of temperature's role in disease dynamics in aquatic ectotherms, especially the unexpected roles of HSP70 in shrimp in facilitating the innate immune system's response to thermal stress, and suggest new approaches to managing WSSV in shrimp farming, such as environmental temperature control or HSP70 induction.
Assuntos
Proteínas de Choque Térmico HSP70 , Penaeidae , Transdução de Sinais , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Vírus da Síndrome da Mancha Branca 1/imunologia , Proteínas de Choque Térmico HSP70/metabolismo , Penaeidae/imunologia , Penaeidae/virologia , Transdução de Sinais/imunologia , Resistência à Doença/imunologia , Resistência à Doença/genética , Proteínas de Artrópodes/imunologia , Temperatura , Imunidade Inata , Temperatura AltaRESUMO
The cytosolic detection of pathogen-derived nucleic acids has evolved as an essential strategy for host innate immune defense in mammals. One crucial component in this process is the stimulator of IFN genes (STING), which acts as a vital signaling adaptor, connecting the cytosolic detection of DNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) to the downstream type I IFN signaling pathway. However, this process remains elusive in invertebrates. In this study, we present evidence demonstrating that STING, an ortholog found in a marine invertebrate (shrimp) called Litopenaeus vannamei, can directly detect DNA and initiate an IFN-like antiviral response. Unlike its homologs in other eukaryotic organisms, which exclusively function as sensors for cyclic dinucleotides, shrimp STING has the ability to bind to both double-stranded DNA and cyclic dinucleotides, including 2'3'-cGAMP. In vivo, shrimp STING can directly sense DNA nucleic acids from an infected virus, accelerate IFN regulatory factor dimerization and nuclear translocation, induce the expression of an IFN functional analog protein (Vago4), and finally establish an antiviral state. Taken together, our findings unveil a novel double-stranded DNA-STING-IKKε-IRF-Vago antiviral axis in an arthropod, providing valuable insights into the functional origins of DNA-sensing pathways in evolution.
Assuntos
Proteínas de Membrana , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Penaeidae/imunologia , Penaeidae/virologia , Imunidade Inata/imunologia , Transdução de Sinais/imunologia , Interferons/metabolismo , Interferons/imunologia , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/imunologiaRESUMO
The JAK-STAT pathway is a central communication node for various biological processes. Its activation is characterized by phosphorylation and nuclear translocation of the transcription factor STAT. The regulatory balance of JAK-STAT signaling is important for maintenance of immune homeostasis. Protein tyrosine phosphatases (PTPs) induce dephosphorylation of tyrosine residues in intracellular proteins and generally function as negative regulators in cell signaling. However, the roles of PTPs in JAK-STAT signaling, especially in invertebrates, remain largely unknown. Pacific white shrimp Penaeus vannamei is currently an important model for studying invertebrate immunity. This study identified a novel member of the dual-specificity phosphatase (DUSP) subclass of the PTP superfamily in P. vannamei, named PvDUSP14. By interacting with and dephosphorylating STAT, PvDUSP14 inhibits the excessive activation of the JAK-STAT pathway, and silencing of PvDUSP14 significantly enhances humoral and cellular immunity in shrimp. The promoter of PvDUSP14 contains a STAT-binding motif and can be directly activated by STAT, suggesting that PvDUSP14 is a regulatory target gene of the JAK-STAT pathway and mediates a negative feedback regulatory loop. This feedback loop plays a role in maintaining homeostasis of JAK-STAT signaling and is involved in antibacterial and antiviral immune responses in shrimp. Therefore, the current study revealed a novel inhibitory mechanism of JAK-STAT signaling, which is of significance for studying the regulatory mechanisms of immune homeostasis in invertebrates.
Assuntos
Retroalimentação Fisiológica , Janus Quinases , Penaeidae , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Penaeidae/imunologia , Penaeidae/genética , Transdução de Sinais/imunologia , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Fosforilação , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/metabolismoRESUMO
Nervous necrosis virus (NNV), an aquatic RNA virus belonging to Betanodavirus, infects a variety of marine and freshwater fishes, leading to massive mortality of cultured larvae and juveniles and substantial economic losses. The enzyme cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is widely recognized as a central component in the innate immune response to cytosolic DNA derived from different pathogens. However, little is known about the response of cGAS to aquatic RNA viruses. This study found that Epinephelus coioides cGAS (EccGAS) overexpression inhibited NNV replication, whereas EccGAS silencing promoted NNV replication. The anti-NNV activity of EccGAS was involved in interferon (IFN) signaling activation including tumor necrosis factor receptor-associated factor family member-associated NF-kappa-B activator-binding kinase 1 (TBK1) phosphorylation, interferon regulatory factor 3 (IRF3) nuclear translocation, and the subsequent induction of IFNc and ISGs. Interestingly, NNV employed its capsid protein (CP) or Protein A (ProA) to negatively or positively modulate EccGAS-mediated IFN signaling by simultaneously targeting EccGAS. CP interacted with EccGAS via the arm-P, S-P, and SD structural domains and promoted its polyubiquitination with K48 and K63 linkages in an EcUBE3C (the ubiquitin ligase)-dependent manner, ultimately leading to EccGAS degradation. Conversely, ProA bound to EccGAS and inhibited its ubiquitination and degradation. In regulating EccGAS protein content, CP's inhibitory action was more pronounced than ProA's protective effect, allowing successful NNV replication. These novel findings suggest that NNV CP and ProA dynamically modulate the EccGAS-mediated IFN signaling pathway to facilitate the immune escape of NNV. Our findings shed light on a novel mechanism of virus-host interaction and provide a theoretical basis for the prevention and control of NNV.IMPORTANCEAs a well-known DNA sensor, cGAS is a pivotal component in innate anti-viral immunity to anti-DNA viruses. Although there is growing evidence regarding the function of cGAS in the resistance to RNA viruses, the mechanisms by which cGAS participates in RNA virus-induced immune responses in fish and how aquatic viruses evade cGAS-mediated immune surveillance remain elusive. Here, we investigated the detailed mechanism by which EccGAS positively regulates the anti-NNV response. Furthermore, NNV CP and ProA interacted with EccGAS, regulating its protein levels through ubiquitin-proteasome pathways, to dynamically modulate the EccGAS-mediated IFN signaling pathway and facilitate viral evasion. Notably, NNV CP was identified to promote the ubiquitination of EccGAS via ubiquitin ligase EcUBE3C. These findings unveil a novel strategy for aquatic RNA viruses to evade cGAS-mediated innate immunity, enhancing our understanding of virus-host interactions.
Assuntos
Proteínas do Capsídeo , Doenças dos Peixes , Evasão da Resposta Imune , Imunidade Inata , Nodaviridae , Nucleotidiltransferases , Infecções por Vírus de RNA , Transdução de Sinais , Replicação Viral , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/imunologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Interferons/metabolismo , Interferons/imunologia , Bass/imunologia , Bass/virologia , Bass/metabolismo , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologiaRESUMO
Infecting a wide range of hosts, members of Reovirales (formerly Reoviridae) consist of a genome with different numbers of segmented double stranded RNAs (dsRNA) encapsulated by a proteinaceous shell and carry out genome replication and transcription inside the virion. Several cryo-electron microscopy (cryo-EM) structures of reoviruses with 9, 10 or 11 segmented dsRNA genomes have revealed insights into genome arrangement and transcription. However, the structure and genome arrangement of 12-segmented Reovirales members remain poorly understood. Using cryo-EM, we determined the structure of mud crab reovirus (MCRV), a 12-segmented dsRNA virus that is a putative member of Reovirales in the non-turreted Sedoreoviridae family, to near-atomic resolutions with icosahedral symmetry (3.1 Å) and without imposing icosahedral symmetry (3.4 Å). These structures revealed the organization of the major capsid proteins in two layers: an outer T = 13 layer consisting of VP12 trimers and unique VP11 clamps, and an inner T = 1 layer consisting of VP3 dimers. Additionally, ten RNA dependent RNA polymerases (RdRp) were well resolved just below the VP3 layer but were offset from the 5-fold axes and arranged with D5 symmetry, which has not previously been seen in other members of Reovirales. The N-termini of VP3 were shown to adopt four unique conformations; two of which anchor the RdRps, while the other two conformations are likely involved in genome organization and capsid stability. Taken together, these structures provide a new level of understanding for capsid stabilization and genome organization of segmented dsRNA viruses.
Assuntos
Orthoreovirus , Vírus de RNA , Reoviridae , Proteínas do Capsídeo/genética , Capsídeo , Microscopia Crioeletrônica , Reoviridae/genéticaRESUMO
ß-Defensins are a family of cysteine-rich antimicrobial peptides that are generally monodomain. Interestingly, the avian ß-defensin 11 (AvBD11) is unique, with two ß-defensin motifs with a broad range of antimicrobial activities. However, a double-sized ß-defensin has not been identified and functionally characterized in invertebrates. In this study, we cloned and identified a double-ß-defensin in shrimp Litopenaeus vannamei (named LvDBD) and explored its potential roles during infection with shrimp pathogens Vibrio parahaemolyticus and white spot syndrome virus (WSSV). LvDBD is an atypical double-sized defensin, which is predicted to possess two motifs related to ß-defensin and six disulfide bridges. The RNA interference-mediated knockdown of LvDBD in vivo results in phenotypes with increased bacterial loads, rendering the shrimp more susceptible to V. parahaemolyticus infection, which could be rescued by the injection of recombinant LvDBD protein. In vitro, rLvDBD could destroy bacterial membranes and enhance hemocyte phagocytosis, possibly attributable to its affinity to the bacterial wall components LPS and peptidoglycan. In addition, LvDBD could interact with several viral envelope proteins to inhibit WSSV proliferation. Finally, the NF-κB transcription factors (Dorsal and Relish) participated in the regulation of LvDBD expression. Taken together, these results extend the functional understanding of a double-ß-defensin to an invertebrate and suggest that LvDBD may be an alternative agent for the prevention and treatment of diseases caused by V. parahaemolyticus and WSSV in shrimp.
Assuntos
Anti-Infecciosos , Penaeidae , Vibrio parahaemolyticus , Vírus da Síndrome da Mancha Branca 1 , beta-Defensinas , Animais , beta-Defensinas/genética , Invertebrados , Vibrio parahaemolyticus/metabolismo , Interferência de RNA , Penaeidae/microbiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/farmacologia , Proteínas de Artrópodes/metabolismoRESUMO
SignificanceHydrogen peroxide is a highly competitive ready-to-use product for solar energy transformation. Nevertheless, the contemporary photosynthetic systems are not efficient enough, due to severe charge recombination caused by high activation energy and binding energy of the exciton. Herein, we achieve spontaneous exciton dissociation at room temperature. Moreover, the photosynthesis of H2O2 reaches between 9,366 and 12,324 µmol·g-1 from 9 AM to 4 PM in ambient conditions, that is, sunlight irradiation, real water including fresh water and seawater, room temperature, and open air. The ultrahigh photocatalytic efficiency in ambient conditions allows the solar-to-chemical conversion in a real cost-effective and sustainable way, which represents an important step toward real applications.
RESUMO
BACKGROUND: Temperature is a crucial environmental determinant for the vitality and development of teleost fish, yet the underlying mechanisms by which they sense temperature fluctuations remain largely unexplored. Transient receptor potential (TRP) proteins, renowned for their involvement in temperature sensing, have not been characterized in teleost fish, especially regarding their temperature-sensing capabilities. RESULTS: In this study, a genome-wide analysis was conducted, identifying a total of 28 TRP genes in the mandarin fish Siniperca chuatsi. These genes were categorized into the families of TRPA, TRPC, TRPP, TRPM, TRPML, and TRPV. Despite notable variations in conserved motifs across different subfamilies, TRP family members shared common structural features, including ankyrin repeats and the TRP domain. Tissue expression analysis showed that each of these TRP genes exhibited a unique expression pattern. Furthermore, examination of the tissue expression patterns of ten selected TRP genes following exposure to both high and low temperature stress indicated the expression of TRP genes were responsive to temperatures changes. Moreover, the expression profiles of TRP genes in response to mandarin fish virus infections showed significant upregulation for most genes after Siniperca chuatsi rhabdovirus, mandarin fish iridovirus and infectious spleen and kidney necrosis virus infection. CONCLUSIONS: This study characterized the TRP family genes in mandarin fish genome-wide, and explored their expression patterns in response to temperature stress and virus infections. Our work will enhance the overall understanding of fish TRP channels and their possible functions.
Assuntos
Perciformes , Filogenia , Canais de Potencial de Receptor Transitório , Animais , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Perciformes/genética , Perciformes/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Família Multigênica , Genoma , Temperatura , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Regulação da Expressão Gênica , IridoviridaeRESUMO
BACKGROUND: The introduction of non-native species is a primary driver of biodiversity loss in freshwater ecosystems. The redclaw crayfish (Cherax quadricarinatus) is a freshwater species that exhibits tolerance to hypoxic stresses, fluctuating temperatures, high ammonia concentration. These hardy physiological characteristics make C. quadricarinatus a popular aquaculture species and a potential invasive species that can negatively impact tropical and subtropical ecosystems. Investigating the genomic basis of environmental tolerances and immune adaptation in C. quadricarinatus will facilitate the development of management strategies of this potential invasive species. RESULTS: We constructed a chromosome-level genome of C. quadricarinatus by integrating Nanopore and PacBio techniques. Comparative genomic analysis suggested that transposable elements and tandem repeats drove genome size evolution in decapod crustaceans. The expansion of nine immune-related gene families contributed to the disease resistance of C. quadricarinatus. Three hypoxia-related genes (KDM3A, KDM5A, HMOX2) were identified as being subjected to positive selection in C. quadricarinatus. Additionally, in vivo analysis revealed that upregulating KDM5A was crucial for hypoxic response in C. quadricarinatus. Knockdown of KDM5A impaired hypoxia tolerance in this species. CONCLUSIONS: Our results provide the genomic basis for hypoxic tolerance and immune adaptation in C. quadricarinatus, facilitating the management of this potential invasive species. Additionally, in vivo analysis in C. quadricarinatus suggests that the role of KDM5A in the hypoxic response of animals is complex.
Assuntos
Adaptação Fisiológica , Astacoidea , Genoma , Animais , Astacoidea/genética , Astacoidea/imunologia , Adaptação Fisiológica/genética , Hipóxia/genética , GenômicaRESUMO
IMPORTANCE: Global aquaculture production yielded a record of 122.9 million tons in 2022. However, ~10% of farmed aquatic animal production is lost each year due to various infectious diseases, resulting in substantial economic waste. Therefore, the development of vaccines is important for the prevention and control of aquatic infectious diseases. Gene-deletion live attenuated vaccines are efficacious because they mimic natural pathogen infection and generate a strong antibody response, thus showing good potential for administration via immersion. However, most gene-deletion viruses still have residual virulence, and thus, gene-deletion immersion vaccines for aquatic viruses are rarely developed. In this study, an orf074r deletion strain (Δorf074r) of ISKNV with residual virulence was constructed, and an immunization process was developed to reduce its residual virulence at 22°C, thereby making it a potential immersion vaccine against ISKNV. Our work will aid in the development of an aquatic gene-deletion live-attenuated immersion vaccine.
Assuntos
Doenças dos Peixes , Iridoviridae , Vacinas Virais , Animais , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/virologia , Imersão , Imunização/métodos , Imunização/veterinária , Iridoviridae/genética , Vacinas Atenuadas , Virulência , Temperatura BaixaRESUMO
Infectious diseases seriously threaten sustainable aquaculture development, resulting in more than $10 billion in economic losses annually. Immersion vaccines are emerging as the key technology for aquatic disease prevention and control. Here, a safe and efficacious candidate immersion vaccine strain (Δorf103r/tk) of infectious spleen and kidney necrosis virus (ISKNV), in which the orf103r and tk genes were knocked out by homologous recombination, is described. Δorf103r/tk was severely attenuated in mandarin fish (Siniperca chuatsi), inducing mild histological lesions, a mortality rate of only 3%, and eliminated within 21 days. A single Δorf103r/tk immersion-administered dose provided long-lasting protection rates over 95% against lethal ISKNV challenge. Δorf103r/tk also robustly stimulated the innate and adaptive immune responses. For example, interferon expression was significantly upregulated, and the production of specific neutralizing antibodies against ISKNV was markedly induced postimmunization. This work provides proof-of-principle evidence for orf103r- and tk-deficient ISKNV for immersion vaccine development to prevent ISKNV disease in aquaculture production. IMPORTANCE Global aquaculture production reached a record of 122.6 million tons in 2020, with a total value of 281.5 billion U.S. dollars (USD). However, approximately 10% of farmed aquatic animal production is lost due to various infectious diseases, resulting in more than 10 billion USD of economic waste every year. Therefore, the development of vaccines to prevent and control aquatic infectious diseases is of great significance. Infectious spleen and kidney necrosis virus (ISKNV) infection occurs in more than 50 species of freshwater and marine fish and has caused great economic losses to the mandarin fish farming industry in China during the past few decades. Thus, it is listed as a certifiable disease by the World Organization for Animal Health (OIE). Herein, a safe and efficient double-gene-deleted live attenuated immersion vaccine against ISKNV was developed, providing an example for the development of aquatic gene-deleted live attenuated immersion vaccine.
Assuntos
Doenças dos Peixes , Iridoviridae , Vacinas Virais , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Peixes , Imersão , Iridoviridae/genética , Iridoviridae/imunologia , Iridoviridae/isolamento & purificação , Iridoviridae/patogenicidade , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Linhagem Celular , Expressão Gênica/imunologia , Anticorpos Antivirais/imunologiaRESUMO
Viral diseases are a significant risk to the aquaculture industry. Transient receptor potential vanilloid 4 (TRPV4) has been reported to be involved in regulating viral activity in mammals, but its regulatory effect on viruses in teleost fish remains unknown. Here, the role of the TRPV4-DEAD box RNA helicase 1 (DDX1) axis in viral infection was investigated in mandarin fish (Siniperca chuatsi). Our results showed that TRPV4 activation mediates Ca2+ influx and facilitates infectious spleen and kidney necrosis virus (ISKNV) replication, whereas this promotion was nearly eliminated by an M709D mutation in TRPV4, a channel Ca2+ permeability mutant. The concentration of cellular Ca2+ increased during ISKNV infection, and Ca2+ was critical for viral replication. TRPV4 interacted with DDX1, and the interaction was mediated primarily by the N-terminal domain (NTD) of TRPV4 and the C-terminal domain (CTD) of DDX1. This interaction was attenuated by TRPV4 activation, thereby enhancing ISKNV replication. DDX1 could bind to viral mRNAs and facilitate ISKNV replication, which required the ATPase/helicase activity of DDX1. Furthermore, the TRPV4-DDX1 axis was verified to regulate herpes simplex virus 1 replication in mammalian cells. These results suggested that the TRPV4-DDX1 axis plays an important role in viral replication. Our work provides a novel molecular mechanism for host involvement in viral regulation, which would be of benefit for new insights into the prevention and control of aquaculture diseases. IMPORTANCE In 2020, global aquaculture production reached a record of 122.6 million tons, with a total value of $281.5 billion. Meanwhile, frequent outbreaks of viral diseases have occurred in aquaculture, and about 10% of farmed aquatic animal production has been lost to infectious diseases, resulting in more than $10 billion in economic losses every year. Therefore, an understanding of the potential molecular mechanism of how aquatic organisms respond to and regulate viral replication is of great significance. Our study suggested that TRPV4 enables Ca2+ influx and interactions with DDX1 to collectively promote ISKNV replication, providing novel insights into the roles of the TRPV4-DDX1 axis in regulating the proviral effect of DDX1. This advances our understanding of viral disease outbreaks and would be of benefit for studies on preventing aquatic viral diseases.
Assuntos
RNA Helicases DEAD-box , Infecções por Vírus de DNA , Iridovirus , Canais de Cátion TRPV , Replicação Viral , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Peixes , Iridovirus/fisiologia , Canais de Cátion TRPV/genéticaRESUMO
IMPORTANCE: Viruses are able to mimic the physiological or pathological mechanism of the host to favor their infection and replication. Virus-mock basement membrane (VMBM) is a Megalocytivirus-induced extracellular structure formed on the surface of infected cells and structurally and functionally mimics the basement membrane of the host. VMBM provides specific support for lymphatic endothelial cells (LECs) rather than blood endothelial cells to adhere to the surface of infected cells, which constitutes a unique phenomenon of Megalocytivirus infection. Here, the structure of VMBM and the interactions between VMBM components and LECs have been analyzed at the molecular level. The regulatory effect of VMBM components on the proliferation and migration of LECs has also been explored. This study helps to understand the mechanism of LEC-specific attachment to VMBM and to address the issue of where the LECs come from in the context of Megalocytivirus infection.
Assuntos
Membrana Basal , Células Endoteliais , Iridoviridae , Vasos Linfáticos , Membrana Basal/metabolismo , Membrana Basal/virologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Iridoviridae/fisiologia , Vasos Linfáticos/citologia , Proliferação de Células , Movimento Celular , Vasos Sanguíneos/citologia , Interações entre Hospedeiro e MicrorganismosRESUMO
Receptors of type I interferon (IFNR) play a vital role in the antiviral immune response. However, little is known about the negative regulatory role of the IFNR. Nervous necrosis virus (NNV) is one of the most significant viruses in cultured fish, resulting in great economic losses for the aquaculture industry. In this study, two orange-spotted grouper (Epinephelus coioides) cytokine receptor family B (CRFB) members, EcCRFB3 and EcCRFB4 were cloned and characterized from NNV infected grouper brain (GB) cells. The open reading frame (ORF) of EcCRFB3 consists of 852 bp encoding 283 amino acids, while EcCRFB4 has an ORF of 990 bp encoding 329 amino acids. The mRNA levels of EcCRFB3 or EcCRFB4 were significantly upregulated after NNV infection and the stimulation of poly (I:C) or NNV-encoded Protein A. In addition, EcCRFB3 or EcCRFB4 overexpression facilitated NNV replication, whereas EcCRFB3 or EcCRFB4 silencing resisted NNV replication. Overexpressed EcCRFB3 or EcCRFB4 inhibited the expression of IFN-I-induced ISGs. Taken together, our research provides the first evidence in fish demonstrating the role of IFNRs to regulate the IFN signaling pathway negatively. Our findings enrich the understanding of the functions of IFNRs and reveal a novel escape mechanism of NNV.
Assuntos
Sequência de Aminoácidos , Bass , Doenças dos Peixes , Proteínas de Peixes , Regulação da Expressão Gênica , Imunidade Inata , Nodaviridae , Infecções por Vírus de RNA , Replicação Viral , Animais , Nodaviridae/fisiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Bass/imunologia , Bass/genética , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Filogenia , Alinhamento de Sequência/veterinária , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Perfilação da Expressão Gênica/veterinária , Interferons/imunologia , Interferons/genéticaRESUMO
Type I interferon (IFN) plays a crucial role in the antiviral immune response. Nervous necrosis virus (NNV) and Micropterus salmoides rhabdovirus (MSRV) are the most important viruses in cultured larvae and juveniles, causing great economic losses to fish farming. To better understand the antiviral activities and immunoregulatory role of IFN from orange-spotted grouper (Epinephelus coioides), EcIFNh was cloned from NNV infected sample. EcIFNh has an open reading frame (ORF) of 552 bp and encodes a polypeptide of 183 amino acids. Phylogenetic tree analysis showed that EcIFNh was clustered into the IFNh branch. The tissue distribution analysis revealed that EcIFNh was highly expressed in the liver and brain of healthy orange-spotted grouper. The mRNA levels of EcIFNh were significantly upregulated after poly (I:C) stimulation and NNV or MSRV infection. Furthermore, the promoter of EcIFNh was characterized and significantly activated by EcMDA5, EcMAVS, EcSTING, EcIRF3, and EcIRF7 in the luciferase activity assays. We found that EcIFNh overexpression resisted the replication of NNV and MSRV, while EcIFNh silencing facilitated NNV replication in GB cells. In addition, EcIFNh recombinant protein (rEcIFNh) enhanced the immune response by inducing the expression of ISGs in vivo and in vitro, suggesting the potential application of rEcIFNh for anti-NNV and anti-MSRV. Taken together, our research may offer the foundation for virus-IFN system interaction in orange-spotted grouper.
Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Rhabdoviridae , Animais , Filogenia , Proteínas de Peixes/genética , Poli I-C/farmacologia , Necrose , Nodaviridae/fisiologia , Imunidade InataRESUMO
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates immune modulation following exposure of animals to many environmental xenobiotics. However, its role in innate immune responses during viral infection is not fully understood, especially in invertebrates. In this study, a cDNA encoding an AhR homolog was cloned from an arthropod Litopenaeus vannamei (LvAhR). The expression of LvAhR was strongly upregulated in response to the challenge of white spot syndrome virus, a pathogen of highly contagious and fatal infectious disease of shrimp. The relevance of LvAhR to host defense was underlined by heightened susceptibility and elevated virus loads after AhR-silenced shrimp exposure to white spot syndrome virus. LvAhR could induce an apoptosis response through regulating the expression of L. vannamei caspase-1 (homologous to human caspase-3) by directly targeting its promoter that was required to couple with AhR nuclear translocator. Additionally, knockdown of L. vannamei caspase-1 resulted in elevated virus titers and a lower cell apoptotic rate. Thus, we demonstrate that an AhR-caspase axis restrains virus replication by promoting antiviral apoptosis, supporting a previously unidentified direct link between AhR signaling and caspase-mediated apoptosis signaling and, furthermore, suggests that the AhR-caspase axis could be a potential therapeutic target for enhancing antiviral responses in arthropods.
Assuntos
Artrópodes , Vírus da Síndrome da Mancha Branca 1 , Animais , Humanos , Receptores de Hidrocarboneto Arílico/genética , Caspases/genética , Antivirais , Apoptose/genética , Caspase 1RESUMO
Intestinal microbiome contains several times of functional genes compared to the host and mediates the generation of multiple metabolic products, and therefore it is called "second genome" for host. Crustaceans rank second among the largest subphylum of aquaculture animals that are considered potentially satisfy global substantial food and nutrition security, among which the Pacific white shrimp (Litopenaeus vannamei) ranks the first in the production. Currently, increasing evidences show that outbreaks of some most devastating diseases in shrimp, including white feces syndrome (WFS) and acute hepatopancreatic necrosis disease (AHPND), are related to intestinal microbiota dysbiosis. Importantly, the intestine microbial composition can be altered by environmental stress, diet, and age. In this review, we overview the progress of intestinal microbiota dysbiosis and WFS or ANPHD in shrimp, and how the microbial composition is altered by external factors. Hence, developing suitable microbial micro-ecological prevention and control strategy to maintain intestinal balance may be a feasible solution to reduce the risk of disease outbreaks. Moreover, we highlight that defining the "healthy intestine microbiota" and evaluating the causality of intestinal microbiota dysbiosis and diseases following the logic of "Microecological Koch's postulates" should be the key goal in future shrimp intestinal field, which help to guide disease diagnosis and prevent disease outbreaks in shrimp farming. KEY POINTS: ⢠Intestinal microbiota dysbiosis is relevant to multiple shrimp diseases. ⢠Microecological Koch's postulates help to evaluate the causality of shrimp diseases.
Assuntos
Aquicultura , Disbiose , Microbioma Gastrointestinal , Penaeidae , Animais , Penaeidae/microbiologia , Disbiose/microbiologiaRESUMO
Increasing evidence suggests that intestine microorganisms are closely related to shrimp growth, but there is no existing experiment to prove this hypothesis. Here, we compared the intestine bacterial community of fast- and slow-growing shrimp at the same developmental stage with a marked difference in body size. Our results showed that the intestine bacterial communities of slow-growing shrimp exhibited less diversity but were more heterogeneous than those of fast-growing shrimp. Uncultured_bacterium_g_Candidatus Bacilloplasma, Tamlana agarivorans, Donghicola tyrosinivorans, and uncultured_bacterium_f_Flavobacteriaceae were overrepresented in the intestines of fast-growing shrimp, while Shimia marina, Vibrio sp., and Vibrio campbellii showed the opposite trends. We further found that the bacterial community composition was significantly correlated with shrimp length, and some bacterial species abundances were found to be significantly correlated with shrimp weight and length, including T. agarivorans and V. campbellii, which were chosen as indicators for a reverse gavage experiment. Finally, T. agarivorans was found to significantly promote shrimp growth after the experiment. Collectively, these results suggest that intestine bacterial community could be important factors in determining the growth of shrimp, indicating that specific bacteria could be tested in further studies against shrimp growth retardation. KEY POINTS: ⢠A close relationship between intestine bacterial community and shrimp growth was proven by controllable experiments. ⢠The bacterial signatures of the intestine were markedly different between slow- and fast-growing shrimp, and the relative abundances of some intestine bacterial species were correlated significantly with shrimp body size. ⢠Reverse gavage by Tamlana agarivorans significantly promoted shrimp growth.
Assuntos
Alteromonadaceae , Penaeidae , Animais , Alimentos MarinhosRESUMO
BACKGROUND AND OBJECTIVE: Off-label pulmonary arterial hypertension (PAH)-targeted drugs are commonly prescribed for non-operated chronic thromboembolic pulmonary hypertension (CTEPH), but their effect on the long-term prognosis of CTEPH remains unknown. This study investigated the effect of off-label PAH-targeted drugs on the long-term survival of CTEPH patients. METHODS: CTEPH patients were enrolled from a prospective multicentre national registry. Except for licensed riociguat and treprostinil, other PAH-targeted drugs were off-label. In the original and propensity score-matched (PSM) samples, five-year survival was compared in two groups: (a) patients not receiving off-label PAH-targeted drugs (control) versus (b) patients receiving off-label PAH-targeted drugs (treatment). The latter group was investigated for the effect of started off-label PAH-targeted drugs at baselines (initial) or during follow-up (subsequent). RESULTS: Of 347 enrolled patients, 212 were treated with off-label PAH-targeted drugs initially (n = 173) or subsequently (n = 39), and 135 were untreated. The 1-, 2-, 3- and 5-year survival of the treatment group was significantly higher than that of the control group (97.1% vs. 89.4%, 92.3% vs. 82.1%, 83.2% vs. 75.1% and 71.1% vs. 55.3%, respectively, log-rank test, p = 0.005). Initial treatment was correlated with better 5-year survival after excluding patients with subsequent treatment to reduce the immortal-time bias (hazard ratio: 0.611; 95% CI: 0.397-0.940; p = 0.025). In PSM samples, patients given initial treatment showed significantly better 5-year survival than untreated patients (68.9% vs. 49.3%, log-rank test, p = 0.008). CONCLUSION: Off-label targeted drugs contributed to improved long-term survival in CTEPH patients receiving pharmacotherapies.
Assuntos
Anti-Hipertensivos , Hipertensão Pulmonar , Uso Off-Label , Sistema de Registros , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/mortalidade , Idoso , Anti-Hipertensivos/uso terapêutico , Doença Crônica , Embolia Pulmonar/mortalidade , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/complicações , Taxa de Sobrevida , Resultado do Tratamento , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Prognóstico , Pontuação de PropensãoRESUMO
Artificial photosynthesis in ambient conditions is much less efficient than the solar-to-biomass conversion (SBC) processes in nature. Here, we successfully mimic the NADP-mediated photosynthetic processes in green plants by introducing redox moieties as the electron acceptors in the present conjugated polymeric photocatalyst. The current artificial process substantially promotes the charge carrier separation efficiency and the oxygen reduction efficiency, achieving a photosynthesis rate for converting Earth-abundant water and oxygen in air into hydrogen peroxide as high as 909 µmolâ g-1â h-1 and a solar-to-chemical conversion (SCC) efficiency up to 0.26%. The SCC efficiency is more than two times higher than the average SBC efficiency in nature (0.1%) and the highest value under ambient conditions. This study presents a strategy for efficient SCC in the future.