Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174570, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38977105

RESUMO

Marine community composition is expected to be relatively stable in a natural environment over time but shift under increasing anthropogenic disturbances. In coastal waters, diatoms and dinoflagellates are two dominant phytoplankton functional groups. In this study, we developed an areal phytoplankton community composition index (APCI) that is based on the area of a scatter plot of dinoflagellate abundance (y-axis) vs diatom abundance (x-axis) using a time window of 1 year, 2 years or 3 years data. An APCI allows an ecological interpretation: it represents the fluctuability of a community composition within a time window and a temporal change between two neighbouring APCIs in a time series represents the stability of the composition. We used a 28-yr time series of monthly data on diatom and dinoflagellate abundance at four stations in Tolo Harbour and Channel (Tolo), Hong Kong to test the hypothesis that temporal changes in APCIs indicate environmental disturbances and to examine the applicability of APCI to indicate changes in nutrient conditions. We calculated the area (APCI) of a scatter plot of monthly data for 1-year, 2-year and 3-year windows, referred to as APCI-1y, -2y and -3y, respectively. The results show that, the fluctuability, is larger in APCI-3y than in APCI-1y, while the stability is stronger as temporal changes between neighbouring APCI-3y are smaller than between APCI-1ys. Temporal trends of APCIs are significantly correlated with those of dissolved inorganic nitrogen and phosphate concentration, which have declined after the implementation of a sewage diversion management plan in 1998. Hence, the APCI method is likely a robust indicator to assess a response of the phytoplankton community composition in a water body to environmental disturbances.


Assuntos
Diatomáceas , Dinoflagellida , Monitoramento Ambiental , Fitoplâncton , Monitoramento Ambiental/métodos , Hong Kong , Água do Mar/química
2.
Food Chem Toxicol ; 182: 114155, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898232

RESUMO

Icariin (ICA) is a natural flavonoid isolated from the traditional Chinese medicinal herb, Epimedium brevicornu Maxim. Although previous studies have reported that ICA exhibits various pharmacological activities, little is known about its toxicology. Herein, zebrafish embryos were exposed to ICA at 0, 2.5, 10, and 40 µM. In developmental analysis, reduced hatching rates, decreased body length, and abnormal swim bladder were found after treatment with 10 and 40 µM ICA. In addition, the ability of locomotor behavior was impaired by ICA. Two important thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), were tested. The exposure resulted in a remarkable alteration of T4 level and a significant decrease of the T3/T4 ratio in the 40 µM, indicating thyroid endocrine disruption. Furthermore, gene transcription analysis showed that genes involved in thyroid development (nkx2.1) and THs synthesis (tg) were up-regulated after ICA exposure. Significant down-regulation of iodothyronine deiodinase (dio1) was also observed in the 10 and 40 µM groups compared to the control. Taken together, our study first demonstrated that ICA caused developmental toxicity possibly through disrupting thyroid development and hormone synthesis. These results show that it is necessary to perform risk assessments of ICA in clinical practice.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Peixe-Zebra , Larva , Hormônios Tireóideos , Glândula Tireoide , Poluentes Químicos da Água/toxicidade , Disruptores Endócrinos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA