RESUMO
Poor dispersibility of carbon nanotubes greatly hinders their practical applications. Herein, a long-term stable dispersion of multiwalled carbon nanotubes (MWCNTs) in peroxydisulfate (PDS) is achieved. MWCNTs at 40 mg L-1 are completely dispersed by PDS upon ultrasonication (US/PDS) within 64 min and a stable dispersion is maintained at least 20 days. Mechanistically, US created defects on the nanomaterial and PDS-origin free radicals attacked these defects to introduce O-containing moieties (âOH and âCOOH). Interestingly, dispersion efficiency of MWCNTs by US/PDS initially at pH 7 and 3.8 is comparable, but lower than that initially at pH 12. Both â¢OH and SO4 â¢- are produced under alkaline condition, while SO4 â¢- is the dominant free radicals initially at pH 7 and 3.8 during the whole dispersion period. Stronger dispersion of MWCNTs initially at pH 12 resulted from greater amounts of O-containing moieties mainly in âOH (46.32%) rather than âCOOH (24.19%) form. This differential more strongly promotes MWCNTs-water interaction via hydrogen bonding, thereby enhancing the dispersion. Notably, no significant mass loss of MWCNTs occurred during dispersion. Overall, the developed method achieves long-term stable dispersion of MWCNTs in a manner that can significantly extend their applications.
RESUMO
Recovering gold from wastewater has both economic and environmental benefits. However, how to effectively recover it is challenging. In this work, a novel Fe-based metal-organic framework (MOF) was synthesized and decorated with 2,5-thiophenedicarboxylic acid to have a well-developed porous architecture to effectively recover Au(III) from water. The maximum Au(III) sorption capacity by the finally-synthesized porous material MIL-101(Fe)-TDCA reached 2350 mg/g at pH = 6.00 ± 0.15, which is one of the highest among all literature-reported relevant materials including MOFs, and high sorption strength can be maintained within a wide pH range from 2.0 to 10.0. Besides, Au(III) sorption efficiency at low concentrations (i.e., 3.5 × 104 mg/mL) reached over 99%. Mechanically, outstanding Au(III) sorption by MIL-101(Fe)-TDCA resulted from the O/N/S-containing moieties on its surface, large surface area and porosity. The N- and S-containing functionalities (CS, CONH) served as electron donors to chelate Au(III). The O-containing (FeOFe, COFe, COOH, and coordinated H2O) and N-containing (CONH) moieties on MIL-101(Fe)-TDCA interacted with OH groups on the hydrolyzed species of Au(III) (AuCl3(OH)-, AuCl2(OH)2-, and AuCl(OH)3-) by hydrogen bond, which further increased Au(III) sorption. Furthermore, about 45.71% of Au(III) was reduced to gold nanoparticles by CS groups on the decorated 2,5-dithiophene dicarboxylic acid during sorption on MIL-101(Fe)-TDCA. Over 98.35% of Au(III) was selectively sorbed on MIL-101(Fe)-TDCA at pH 4.0, much higher than that of the coexisting heavy metal ions including Cu(II), Zn(II), Pb(II), and Ni(II) (< 5%), despite their same concentration at 0.01 mg/mL. Although sorption selectivity of a noble metal Pt(IV) by MIL-101(Fe)-TDCA is relatively poor (68.23%), it could be acceptable. Moreover, reusability of MIL-101(Fe)-TDCA is also excellent, since above 90.5% Au(III) still can be sorbed after two sorption-desorption cycles. Overall, excellent sorption performance and the roughly-calculated gold recycling benefits (26.30%) highlight that MIL-101(Fe)-TDCA is a promising porous material for gold recovery from the aqueous phase.
RESUMO
This study aims to use ultraviolet (UV) irradiation to decompose polybrominated diphenyl ethers (PBDEs) in the elutes and then reuse the surfactants. The results indicate that UV can remove 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) from surfactant eluents and Triton X series surfactants also can remove BDE-47 from the soil. Triton X-100 (TX-100) is the most promising surfactant during the washing and photodegradation processes. Quench experiments suggest that both 1O2 and OH⢠were involved in the TX-100 decomposition but only 1O2 is responsible for the degradation of BDE-47. In analysis of the photoproducts of BDE-47 by Gas Chromatography Mass Spectrum (GC-MS) and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS), BDE-47 was mainly debrominated to the lower-brominated BDEs and then oxidized to ring-opening products. The little loss of TX-100 can mainly be attributed to the breakage of polyethylene oxide (PEO) chain. Nevertheless, the washing wastes treated by UV light can exhibit higher solubility for BDE-47 than before, indicating they can be reused for BDE-47 removal from soil. The toxicity assessment experiments were performed using Escherichia coli (E.coli) as an indicator. The results indicate that the removal of BDE-47 by UV irradiation can reduce the toxicity of eluent.
Assuntos
Bifenil Polibromatos , Tensoativos , Cromatografia Gasosa-Espectrometria de Massas , Éteres Difenil Halogenados/análise , Octoxinol , Fotólise , SoloRESUMO
High-uniform nanowires with diameters down to 50 nm are directly taper-drawn from bulk glasses. Typical loss of these wires goes down to 0.1 dB/mm for single-mode operation. Favorable photonic properties such as high index for tight optical confinement in tellurite glass nanowires and photoluminescence for active devices in doped fluoride and phosphate glass nanowires are observed. Supporting high-index tellurite nanowires with solid substrates (such as silica glass and MgF2 crystal) and assembling low-loss microcoupler with these wires are also demonstrated. Photonic nanowires demonstrated in this work may open up vast opportunities for making versatile building blocks for future micro- and nanoscale photonic circuits and components.
RESUMO
An antimony--germanium- (Sb--Ge-) codoped fiber specially designed for the fabrication of fiber Bragg gratings (FBGs) with high temperature sustainability has been developed. The photosensitivity and the high-temperature sustainability of FBGs that have been written into this fiber were tested. The results obtained showed that the FBG written into this fiber has a very high temperature sustainability of 900 degrees C. A decay mechanism that involves cation hopping is presented to explain the observed high temperature sustainability of the grating written into this fiber.