Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Small ; 18(35): e2202516, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35950565

RESUMO

Rapid, accurate, and sensitive insulin detection is crucial for managing and treating diabetes. A simple sandwich-type electrochemical immunosensor is engineered using gold nanoparticle (AuNP)-adhered metal-organic framework-derived copper-zinc hollow porous carbon nanocubes (Au@Cu5 Zn8 /HPCNC) and AuNP-deposited nitrogen-doped holey graphene (NHG) are used as a dual functional label and sensing platform. The results show that identical morphology and size of Au@Cu5 Zn8 /HPCNC enhance the electrocatalytic active sites, conductivity, and surface area to immobilize the detection antibodies (Ab2 ). In addition, AuNP/NHG has the requisite biocompatibility and electrical conductivity, which facilitates electron transport and increases the surface area of the capture antibody (Ab1 ). Significantly, Cu5 Zn8 /HPCNC exhibits necessary catalytic activity and sensitivity for the electrochemical reduction of H2 O2 using (i-t) amperometry and improves the electrochemical response in differential pulse voltammetry. Under optimal conditions, the immunosensor for insulin demonstrates a wide linear range with a low detection limit and viable specificity, stability, and reproducibility. The platform's practicality is evaluated by detecting insulin in human serum samples. All these characteristics indicate that the Cu5 Zn8 /HPCNC-based biosensing strategy may be used for the point-of-care assay of diverse biomarkers.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Anticorpos Imobilizados/química , Carbono , Técnicas Eletroquímicas/métodos , Ouro/química , Grafite/química , Humanos , Imunoensaio/métodos , Insulina , Limite de Detecção , Nanopartículas Metálicas/química , Nitrogênio , Porosidade , Reprodutibilidade dos Testes , Zinco
2.
Nano Lett ; 21(1): 120-129, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33320006

RESUMO

Energy-saving photodetectors are the key components in future photonic systems. Particularly, self-powered photoelectrochemical-type photodetectors (PEC-PDs), which depart completely from the classical solid-state junction device, have lately intrigued intensive interest to meet next-generation power-independent and environment-sensitive photodetection. Herein, we construct, for the first time, solar-blind PEC PDs based on self-assembled AlGaN nanostructures on silicon. Importantly, with the proper surface platinum (Pt) decoration, a significant boost of photon responsivity by more than an order of magnitude was achieved in the newly built Pt/AlGaN nanoarchitectures, demonstrating strikingly high responsivity of 45 mA/W and record fast response/recovery time of 47/20 ms without external power source. Such high solar-blind photodetection originates from the unparalleled material quality, fast interfacial kinetics, as well as high carrier separation efficiency which suggests that embracement of defect-free wide-bandgap semiconductor nanostructures with appropriate surface decoration offers an unprecedented opportunity for designing future energy-efficient and large-scale optoelectronic systems on a silicon platform.

3.
Nat Mater ; 19(12): 1326-1331, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32661381

RESUMO

The fast penetration of electrification in rural areas calls for the development of competitive decentralized approaches. A promising solution is represented by low-cost and compact integrated solar flow batteries; however, obtaining high energy conversion performance and long device lifetime simultaneously in these systems has been challenging. Here, we use high-efficiency perovskite/silicon tandem solar cells and redox flow batteries based on robust BTMAP-Vi/NMe-TEMPO redox couples to realize a high-performance and stable solar flow battery device. Numerical analysis methods enable the rational design of both components, achieving an optimal voltage match. These efforts led to a solar-to-output electricity efficiency of 20.1% for solar flow batteries, as well as improved device lifetime, solar power conversion utilization ratio and capacity utilization rate. The conceptual design strategy presented here also suggests general future optimization approaches for integrated solar energy conversion and storage systems.

4.
Analyst ; 146(12): 4066-4079, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34048512

RESUMO

Matrix metalloproteinase-1 (MMP-1) is associated with many types of cancers, including oral, colorectal, and brain cancers. This paper describes the fabrication of an MMP-1 immunosensor based on a gold nanoparticle/polyethyleneimine/reduced graphene oxide (AuNP/PEI/rGO)-modified disposable screen-printed electrode (SPE). A microwave-assisted single-step method was employed for the simultaneous reduction of gold and graphene oxide in a PEI environment to avoid AuNP agglomeration. The crystal structure, chemical composition, optical properties, and interior morphology of the materials were probed by X-ray diffraction, Raman spectroscopy, UV-visible spectrometry, and transmission electron microscopy techniques. To assemble a label-free MMP-1 immunosensor layer-by-layer, 3-mercaptopropionic acid was utilized due to its strong sulfur-gold bonding ability, and its tail end was attached to a carboxyl group, allowing the MMP-1 antibody (anti-MMP-1) to be subsequently cross-linked using the traditional N-(3-dimethylaminopropyl) and N' ethylcarbodiimide hydrochloride method. Differential pulse voltammetry analysis showed a linear relationship with MMP-1 concentration in the range of 1-50 ng ml-1 with an R2 value of ∼0.996 (n = 5, RSD < 5%). This immunosensor was successfully applied for MMP-1 detection in urine, saliva, bovine serum, and cell culture media (HSC-3 & C6) of oral and brain cancers showing results comparable to those of the credible ELISA method.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Nanocompostos , Neoplasias , Animais , Biomarcadores Tumorais , Bovinos , Técnicas Eletroquímicas , Eletrodos , Ouro , Imunoensaio , Limite de Detecção , Metaloproteinase 1 da Matriz , Polietilenoimina
5.
Small ; 15(19): e1901190, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30957964

RESUMO

Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat-based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme-based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all-in-one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3 C2 Tx /PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid-liquid-air three-phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm-1 cm-2 for glucose and 11.4 µA mm-1 cm-2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas/instrumentação , Suor/química , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas In Vitro , Nanocompostos
6.
Opt Express ; 27(8): A352-A363, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052887

RESUMO

Photoelectrochemical water splitting is one of the viable approaches to produce clean hydrogen energy from water. Herein, we report MoS2/Si-heterojunction (HJ) photocathode for PEC H2 production. The MoS2/Si-HJ photocathode exhibits exceptional PEC H2 production performance with a maximum photocurrent density of 36.33 mA/cm2, open circuit potential of 0.5 V vs. RHE and achieves improved long-term stability up to 10 h of reaction time. The photocurrent density achieved by MoS2/Si-HJ photocathode is significantly higher than most of the MoS2 coupled Si-based photocathodes reported elsewhere, indicating excellent PEC H2 production performance.

7.
Angew Chem Int Ed Engl ; 58(43): 15206-15226, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30785665

RESUMO

Hybrid organic-inorganic materials have been considered as a new candidate in the field of thermoelectric materials since the last decade owing to their great potential to enhance the thermoelectric performance by utilizing the low thermal conductivity of organic materials and the high Seebeck coefficient, and high electrical conductivity of inorganic materials. Herein, we provide an overview of interfacial engineering in the synthesis of various organic-inorganic thermoelectric hybrid materials, along with the dimensional design for tuning their thermoelectric properties. Interfacial effects are examined in terms of nanostructures, physical properties, and chemical doping between the inorganic and organic components. Several key factors which dictate the thermoelectric efficiency and performance of various electronic devices are also discussed, such as the thermal conductivity, electric transportation, electronic band structures, and band convergence of the hybrid materials.

8.
Opt Express ; 26(3): 3037-3045, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401836

RESUMO

This paper presents the first demonstration of InGaN multiple quantum well (MQW) based micro-photodetectors (µPD) used as the optical receiver in orthogonal frequency-division multiplexing (OFDM) modulated visible communication system (VLC). The 80-µm diameter µPD exhibits a wavelength-selective responsivity in the near-UV to violet regime (374 nm - 408 nm) under a low reverse bias of -3 V. The modulation scheme of 16-quadrature amplitude modulation (16-QAM) OFDM enables the use of frequency response beyond -3 dB cutoff bandwidth of µPD. A record high data rate of 3.2 Gigabit per second (Gpbs) was achieved as a result, which provides the proof-of-concept verification of a viable high speed VLC link.

9.
Proc Natl Acad Sci U S A ; 112(12): 3612-7, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25762067

RESUMO

Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

10.
Nano Lett ; 17(3): 1520-1528, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28177248

RESUMO

Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of -31 mA/cm2 at -0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 µmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.

11.
Nano Lett ; 17(8): 4759-4767, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28657752

RESUMO

Unintentional self-doping in semiconductors through shallow defects is detrimental to optoelectronic device performance. It adversely affects junction properties and it introduces electronic noise. This is especially acute for solution-processed semiconductors, including hybrid perovskites, which are usually high in defects due to rapid crystallization. Here, we uncover extremely low self-doping concentrations in single crystals of the two-dimensional perovskites (C6H5C2H4NH3)2PbI4·(CH3NH3PbI3)n-1 (n = 1, 2, and 3), over three orders of magnitude lower than those of typical three-dimensional hybrid perovskites, by analyzing their conductivity behavior. We propose that crystallization of hybrid perovskites containing large organic cations suppresses defect formation and thus favors a low self-doping level. To exemplify the benefits of this effect, we demonstrate extraordinarily high light-detectivity (1013 Jones) in (C6H5C2H4NH3)2PbI4·(CH3NH3PbI3)n-1 photoconductors due to the reduced electronic noise, which makes them particularly attractive for the detection of weak light signals. Furthermore, the low self-doping concentration reduces the equilibrium charge carrier concentration in (C6H5C2H4NH3)2PbI4·(CH3NH3PbI3)n-1, advantageous in the design of p-i-n heterojunction solar cells by optimizing band alignment and promoting carrier depletion in the intrinsic perovskite layer, thereby enhancing charge extraction.

12.
Nano Lett ; 16(1): 309-13, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26676025

RESUMO

By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm(2) and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultrahigh efficiency photovoltaic cells in the future.

13.
Nat Mater ; 14(12): 1245-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26366849

RESUMO

The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm(-2) at overpotentials as low as 48 mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n(+)-p-p(+) silicon micropyramids achieved photocurrents up to 35 mA cm(-2) at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

14.
Nano Lett ; 15(5): 2817-24, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25665138

RESUMO

Amorphous Si (a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages. The SiHJ was designed and fabricated into both photoanode and photocathode with high oxygen and hydrogen evolution efficiency, respectively, by simply coating of a thin layer of catalytic materials. The SiHJ photoanode with sol-gel NiOx as the catalyst shows a current density of 21.48 mA/cm(2) at the equilibrium water oxidation potential. The SiHJ photocathode with 2 nm sputter-coated Pt catalyst displays excellent hydrogen evolution performance with an onset potential of 0.640 V and a solar to hydrogen conversion efficiency of 13.26%, which is the highest ever reported for Si-based photocathodes.

15.
Nano Lett ; 15(2): 1356-61, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25602462

RESUMO

When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

16.
Angew Chem Int Ed Engl ; 55(42): 13104-13108, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27654317

RESUMO

Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L-1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

17.
Opt Express ; 23(14): 18746-53, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26191934

RESUMO

With increasing interest in visible light communication, the laser diode (LD) provides an attractive alternative, with higher efficiency, shorter linewidth and larger bandwidth for high-speed visible light communication (VLC). Previously, more than 3 Gbps data rate was demonstrated using LED. By using LDs and spectral-efficient orthogonal frequency division multiplexing encoding scheme, significantly higher data rates has been achieved in this work. Using 16-QAM modulation scheme, in conjunction with red, blue and green LDs, data rates of 4.4 Gbps, 4 Gbps and 4 Gbps, with the corresponding BER/SNR/EVM of 3.3 × 10⁻³/15.3/17.9, 1.4 × 10⁻³/16.3/15.4 and 2.8 × 10⁻³/15.5/16.7were obtained over transmission distance of ~20 cm. We also simultaneously demonstrated white light emission using red, blue and green LDs, after passing through a commercially available diffuser element. Our work highlighted that a tradeoff exists in operating the blue LDs at optimum bias condition while maintaining good color temperature. The best results were obtained when encoding red LDs which gave both the strongest received signal amplitude and white light with CCT value of 5835K.

18.
Opt Express ; 23(18): 23302-9, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26368431

RESUMO

We experimentally demonstrate an underwater wireless optical communications (UWOC) employing 450-nm TO-9 packaged and fiber-pigtailed laser diode (LD) directly encoded with an orthogonal frequency division multiplexed quadrature amplitude modulation (QAM-OFDM) data. A record data rate of up to 4.8 Gbit/s over 5.4-m transmission distance is achieved. By encoding the full 1.2-GHz bandwidth of the 450-nm LD with a 16-QAM-OFDM data, an error vector magnitude (EVM) of 16.5%, a signal-to-noise ratio (SNR) of 15.63 dB and a bit error rate (BER) of 2.6 × 10(-3), well pass the forward error correction (FEC) criterion, were obtained.

19.
Opt Express ; 23(26): 33656-66, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26832029

RESUMO

Visible Light Communication (VLC) as a new technology for ultrahigh-speed communication is still limited when using slow modulation light-emitting diode (LED). Alternatively, we present a 4-Gbit/s VLC system using coherent blue-laser diode (LD) via 16-quadrature amplitude modulation orthogonal frequency division multiplexing. By changing the composition and the optical-configuration of a remote phosphor-film the generated white light is tuned from cool day to neutral, and the bit error rate is optimized from 1.9 × 10(-2) to 2.8 × 10(-5) in a blue filter-free link due to enhanced blue light transmission in forward direction. Briefly, blue-LD is an alternative to LED for generating white light and boosting the data rate of VLC.

20.
Opt Express ; 23(24): 31150-62, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26698744

RESUMO

The combination of ZnO, InN, and GaN epitaxial layers is explored to provide long wavelength photodetection capability in the GaN based materials. Growth temperature optimization was performed to obtain the best quality of InN epitaxial layer in the MOCVD system. The temperature dependent photoluminescence (PL) can provide the information about thermal quenching in the InN PL transitions and at least two non-radiative processes can be observed. X-ray diffraction and energy dispersive spectroscopy are applied to confirm the inclusion of indium and the formation of InN layer. The band alignment of such system shows a typical double heterojunction, which is preferred in optoelectronic device operation. The photodetector manufactured by this ZnO/GaN/InN layer can exhibit extended long-wavelength quantum efficiency, as high as 3.55%, and very strong photocurrent response under solar simulator illumination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA