Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nature ; 612(7939): 252-258, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36385531

RESUMO

Integrated femtosecond pulse and frequency comb sources are critical components for a wide range of applications, including optical atomic clocks1, microwave photonics2, spectroscopy3, optical wave synthesis4, frequency conversion5, communications6, lidar7, optical computing8 and astronomy9. The leading approaches for on-chip pulse generation rely on mode-locking inside microresonators with either third-order nonlinearity10 or with semiconductor gain11,12. These approaches, however, are limited in noise performance, wavelength and repetition rate tunability 10,13. Alternatively, subpicosecond pulses can be synthesized without mode-locking, by modulating a continuous-wave single-frequency laser using electro-optic modulators1,14-17. Here we demonstrate a chip-scale femtosecond pulse source implemented on an integrated lithium niobate photonic platform18, using cascaded low-loss electro-optic amplitude and phase modulators and chirped Bragg grating, forming a time-lens system19. The device is driven by a continuous-wave distributed feedback laser chip and controlled by a single continuous-wave microwave source without the need for any stabilization or locking. We measure femtosecond pulse trains (520-femtosecond duration) with a 30-gigahertz repetition rate, flat-top optical spectra with a 10-decibel optical bandwidth of 12.6 nanometres, individual comb-line powers above 0.1 milliwatts, and pulse energies of 0.54 picojoules. Our results represent a tunable, robust and low-cost integrated pulsed light source with continuous-wave-to-pulse conversion efficiencies an order of magnitude higher than those achieved with previous integrated sources. Our pulse generator may find applications in fields such as ultrafast optical measurement19,20 or networks of distributed quantum computers21,22.


Assuntos
Óxidos , Semicondutores , Olho , Micro-Ondas
2.
Funct Integr Genomics ; 23(2): 160, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37178159

RESUMO

Patients diagnosed with stable coronary artery disease (CAD) are at continued risk of experiencing acute myocardial infarction (AMI). This study aims to unravel the pivotal biomarkers and dynamic immune cell changes, from an immunological, predictive, and personalized viewpoint, by implementing a machine-learning approach and a composite bioinformatics strategy. Peripheral blood mRNA data from different datasets were analyzed, and CIBERSORT was used for deconvoluting human immune cell subtype expression matrices. Weighted gene co-expression network analysis (WGCNA) in single-cell and bulk transcriptome levels was conducted to explore possible biomarkers for AMI, with a particular emphasis on examining monocytes and their involvement in cell-cell communication. Unsupervised cluster analysis was performed to categorize AMI patients into different subtypes, and machine learning methods were employed to construct a comprehensive diagnostic model to predict the occurrence of early AMI. Finally, RT-qPCR on peripheral blood samples collected from patients validated the clinical utility of the machine learning-based mRNA signature and hub biomarkers. The study identified potential biomarkers for early AMI, including CLEC2D, TCN2, and CCR1, and found that monocytes may play a vital role in AMI samples. Differential analysis revealed that CCR1 and TCN2 exhibited elevated expression levels in early AMI compared to stable CAD. Machine learning methods showed that the glmBoost+Enet [alpha=0.9] model achieved high predictive accuracy in the training set, external validation sets, and clinical samples in our hospital. The study provided comprehensive insights into potential biomarkers and immune cell populations involved in the pathogenesis of early AMI. The identified biomarkers and the constructed comprehensive diagnostic model hold great promise for predicting the occurrence of early AMI and can serve as auxiliary diagnostic or predictive biomarkers.


Assuntos
Infarto do Miocárdio , Humanos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Análise por Conglomerados , Biologia Computacional , Aprendizado de Máquina , RNA Mensageiro/genética
3.
Environ Res ; 238(Pt 2): 117272, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776940

RESUMO

Apprehending the hydrological and nutrient variations in rapidly urbanizing watersheds under changing environments is crucial for pollution control and water resource management. However, existing studies have primarily focused on hydrological processes, neglecting water quality aspects, and comprehensive assessment of future runoff and nutrient loads in these watersheds during China's Dual Carbon periods is limited. This study firstly bridges these gaps by constructing multi-scenario with different levels of "Urban Development - Ecological Conservation" and utilizing latest bias-corrected General Circulation Models or Global Climate Models (GCMs) projections to evaluate future runoff and nutrient loads in the Shenzhen River. The calibrated and validated models display satisfactory performance in simulating runoff, nutrient loads, and land use types. The bias-corrected GCMs projections exhibit enhanced accuracy for temperature variables, particularly during the wet season. Implementing effective ecological protection measures is paramount in mitigating water quantity fluctuations and controlling total nitrogen pollution, which is closely associated with urban development and human activities. Conversely, total phosphorus loads demonstrate greater simulation uncertainty, particularly during the dry season of the Carbon Neutrality period, requiring further exploration. Compared to the baseline period, runoff changes minimally, with notable seasonal variations. The findings highlight the escalating uncertainty in load predictions as time progresses. Additionally, addressing uncertainties in precipitation projections driven by GCMs is imperative, given their substantial influence on runoff and nutrient load simulations, particularly during challenging dry seasons. While further research is needed to reduce simulation uncertainty, our study provides valuable insights into nitrogen-phosphorus pollution control and sustainable water resource management in rapidly urbanizing watersheds, especially during the near-term period.


Assuntos
Nitrogênio , Fósforo , Humanos , Simulação por Computador , Estações do Ano , Nitrogênio/análise , Fósforo/análise , China
4.
J Environ Sci (China) ; 123: 350-366, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521998

RESUMO

Atmospheric oxidizing capacity (AOC) is an essential driving force of troposphere chemistry and self-cleaning, but the definition of AOC and its quantitative representation remain uncertain. Driven by national demand for air pollution control in recent years, Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research. This paper will give a brief review of these developments. First, AOC indexes were established that represent apparent atmospheric oxidizing ability (AOIe) and potential atmospheric oxidizing ability (AOIp) based on aspects of macrothermodynamics and microdynamics, respectively. A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing, and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country. In addition, the detection of ground or vertical profiles for atmospheric OH·, HO2·, NO3· radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments. Moreover, laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O3 and NO2, which are typical oxidants in the surface/interface atmosphere, and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies, multiphase and multi-interface conditions were obtained. Finally, based on the GRAPES-CUACE adjoint model improved by Chinese scholars, simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized. Normalized numerical simulations of AOIe and AOIp were performed, and regional coordination of AOC was adjusted. An optimized plan for controlling O3 and PM2.5 was analyzed by scenario simulation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluição do Ar/análise , Atmosfera/química , Aerossóis/análise , Oxirredução , Oxidantes , Poluentes Atmosféricos/análise , Material Particulado/análise , China , Monitoramento Ambiental
5.
Apoptosis ; 27(5-6): 329-341, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35257265

RESUMO

The sensitivity of cells to chemotherapeutic agents has a major effect on disease outcome in breast cancer patients. Unfortunately, there are numerous factors involved in the regulation of chemosensitivity, and the mechanisms need to be further investigated. Autophagy/Beclin 1 regulator 1 (Ambra1) is a key protein in the crosstalk between autophagy and apoptosis. It controls the switch between these two processes, which determines whether cells survive or die. Induction of apoptosis is the primary mechanism by which most chemotherapeutic drugs eliminate cancer cells. Recently, Ambra1 has been shown to modulate paclitaxel-induced apoptosis in breast cancer cells via the Bim/mitochondrial pathway, thereby modifying the sensitivity of cells to paclitaxel. However, how Ambra1 regulates Bim expression remains unclear. Here, we further confirmed that Bim plays an indispensable role in Ambra1's regulation of apoptosis and chemosensitivity in breast cancer cells. Furthermore, Ambra1 was found to regulate Bim expression at the transcriptional level through the Akt-FoxO1 pathway. Therefore, we propose a novel pathway, Ambra1-Akt-FoxO1-Bim, which regulates apoptosis and chemosensitivity in breast cancer cells. Thus, Ambra1 may represent a potential target for breast cancer treatment.


Assuntos
Apoptose , Neoplasias da Mama , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Environ Sci Technol ; 56(11): 6996-7005, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35050611

RESUMO

Identifying the health risk of PM2.5 is essential for urban air pollution control. In 2013, China announced the ever-strict national Air Pollution Prevention and Control Action Plan, and its health benefit should be evaluated to provide reference for future policymaking. In this study, we conducted a seven-year (2014-2020) continuous observation of PM2.5 in Shenzhen, the third largest city in China, which has relatively good air quality. The results showed that the annual mean PM2.5 and total concentration of 21 associated metals dropped from 37.7 to 18.5 µg/m3 and from 2.4 to 1.1 µg/m3, respectively. Combining methods for source apportionment and health risk assessment, we found that the total carcinogenic risk (CR) of five hazardous metals (Cd, Cr, Ni, Co, and Pb) showed a clear decreasing trend. However, the total CR (1.8 × 10-6) in 2020 still exceeded the widely acceptable risk level (i.e., 1 × 10-6), with the primary contributor changing from industrial emissions (61%) to vehicle emissions (63%). Further analysis indicated that the CR of vehicles mainly came from Cr and Ni released by braking and tire wearing and has fluctuated in recent years, highlighting a great challenge of controlling nonexhaust emissions of vehicles (including electric cars) in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Metais Pesados , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Carcinógenos , China , Monitoramento Ambiental/métodos , Metais/análise , Material Particulado/análise , Medição de Risco , Emissões de Veículos/análise
7.
Environ Sci Technol ; 56(24): 17569-17580, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36473087

RESUMO

Tropospheric ozone (O3) is a harmful gas compound to humans and vegetation, and it also serves as a climate change forcer. O3 is formed in the reactions of nitrogen oxides and volatile organic compounds (VOCs) with light. In this study, an O3 pollution episode encountered in Shenzhen, South China in 2018 was investigated to illustrate the influence of aerosols on local O3 production. We used a box model with comprehensive heterogeneous mechanisms and empirical prediction of photolysis rates to reproduce the O3 episode. Results demonstrate that the aerosol light extinction and NO2 heterogeneous reactions showed comparable influence but opposite signs on the O3 production. Hence, the influence of aerosols from different processes is largely counteracted. Sensitivity tests suggest that O3 production increases with further reduction in aerosols in this study, while the continued NOx reduction finally shifts O3 production to an NOx-limited regime with respect to traditional O3-NOx-VOC sensitivity. Our results shed light on the role of NOx reduction on O3 production and highlight further mitigation in NOx not only limiting the production of O3 but also helping to ease particulate nitrate, as a path for cocontrol of O3 and fine particle pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Ozônio/análise , China , Compostos Orgânicos Voláteis/análise , Aerossóis/análise , Monitoramento Ambiental
8.
Proc Natl Acad Sci U S A ; 116(16): 7760-7765, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936298

RESUMO

China has been experiencing fine particle (i.e., aerodynamic diameters ≤ 2.5 µm; PM2.5) pollution and acid rain in recent decades, which exert adverse impacts on human health and the ecosystem. Recently, ammonia (i.e., NH3) emission reduction has been proposed as a strategic option to mitigate haze pollution. However, atmospheric NH3 is also closely bound to nitrogen deposition and acid rain, and comprehensive impacts of NH3 emission control are still poorly understood in China. In this study, by integrating a chemical transport model with a high-resolution NH3 emission inventory, we find that NH3 emission abatement can mitigate PM2.5 pollution and nitrogen deposition but would worsen acid rain in China. Quantitatively, a 50% reduction in NH3 emissions achievable by improving agricultural management, along with a targeted emission reduction (15%) for sulfur dioxide and nitrogen oxides, can alleviate PM2.5 pollution by 11-17% primarily by suppressing ammonium nitrate formation. Meanwhile, nitrogen deposition is estimated to decrease by 34%, with the area exceeding the critical load shrinking from 17% to 9% of China's terrestrial land. Nevertheless, this NH3 reduction would significantly aggravate precipitation acidification, with a decrease of as much as 1.0 unit in rainfall pH and a corresponding substantial increase in areas with heavy acid rain. An economic evaluation demonstrates that the worsened acid rain would partly offset the total economic benefit from improved air quality and less nitrogen deposition. After considering the costs of abatement options, we propose a region-specific strategy for multipollutant controls that will benefit human and ecosystem health.

9.
J Environ Sci (China) ; 114: 249-258, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35459490

RESUMO

Herein, we use an oxidation flow reactor, Gothenburg: Potential Aerosol Mass (Go: PAM) reactor, to investigate the secondary organic aerosol (SOA) formation from wheat straw burning. Biomass burning emissions are exposed to high concentrations of hydroxyl radicals (OH) to simulate processes equivalent to atmospheric oxidation of 0-2.55 days. Primary volatile organic compounds (VOCs) were investigated, and particles were measured before and after the Go: PAM reactor. The influence of water content (i.e. 5% and 11%) in wheat straw was also explored. Two burning stages, the flaming stage, and non-flaming stages, were identified. Primary particle emission factors (EFs) at a water content of 11% (∼3.89 g/kg-fuel) are significantly higher than those at a water content of 5% (∼2.26 g/kg-fuel) during the flaming stage. However, the water content showed no significant influence at the non-flaming stage. EFs of aromatics at a non-flaming stage (321.8±46.2 mg/kg-fuel) are larger than that at a flaming stage (130.9±37.1 mg/kg-fuel). The OA enhancement ratios increased with the increase in OH exposure at first and decreased with the additional increment of OH exposure. The maximum OA enhancement ratio is ∼12 during the non-flaming stages, which is much higher than ∼ 1.7 during the flaming stages. The mass spectrum of the primary wheat burning organic aerosols closely resembles that of resolved biomass burning organic aerosols (BBOA) based on measurements in ambient air. Our results show that large gap (∼60%-90%) still remains to estimate biomass burning SOA if only the oxidation of VOCs were included.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Compostos Orgânicos Voláteis/análise , Água
10.
Environ Sci Technol ; 55(17): 11557-11567, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34431667

RESUMO

The lockdown due to COVID-19 created a rare opportunity to examine the nonlinear responses of secondary aerosols, which are formed through atmospheric oxidation of gaseous precursors, to intensive precursor emission reductions. Based on unique observational data sets from six supersites in eastern China during 2019-2021, we found that the lockdown caused considerable decreases (32-61%) in different secondary aerosol components in the study region because of similar-degree precursor reductions. However, due to insufficient combustion-related volatile organic compound (VOC) reduction, odd oxygen (Ox = O3 + NO2) concentration, an indicator of the extent of photochemical processing, showed little change and did not promote more decreases in secondary aerosols. We also found that the Chinese provinces and international cities that experienced reduced Ox during the lockdown usually gained a greater simultaneous PM2.5 decrease than other provinces and cities with an increased Ox. Therefore, we argue that strict VOC control in winter, which has been largely ignored so far, is critical in future policies to mitigate winter haze more efficiently by reducing Ox simultaneously.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Oxigênio , Material Particulado/análise , SARS-CoV-2
11.
Thromb J ; 19(1): 92, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823539

RESUMO

BACKGROUND: Immune-mediated necrotizing myopathy (IMNM) is characterized by proximal muscle weakness, elvated serum muscle enzyme levels, myopathic electromyography findings, and necrotic muscle fiber with few inflammatory cell infiltration in muscle biopsies. Statins, the first line drug to lower triglyceride and cholesterol level in blood, have been reported to be associated with statins-induced necrotizing autoimmune myopathy (SINAM). Although anti-3-hydroxy-3-methylglutarylcoenzyme-A reductase (anti-HMGCR) myopathy is considered as the leading myopathy related to the statins medication, anti-signal recognition particle (SRP) myopathy were also identified in several cases with statin exposure. The risk of deep venous thrombosis (DVT) is substantially high in individuals with autoimmune inflammatory diseases. But few studies have reported the occurrence and recommendation for treatment of DVT in patients with anti-SRP myopathy. Here, we reported a statin-exposed anti-SRP myopathy individual developed DVT who was successfully treated with catheter-directed thrombolysis (CDT) and systemic anticoagulants therapy. CASE PRESENTATION: A 56-year-old Chinese female came to the outpatient room with gradually progressive bilateral lower-extremity weakness. Magnetic resonance imaging revealed myopathy in bilateral thighs. Serum anti-SRP antibody was positive. She was diagnosed with anti-SRP myopathy. When treated with corticosteroids and immunosuppressants, the patient developed mild edema and pain of left lower extremity. Angiography and ultrasound revealed diffuse venous thrombosis of left lower extremity. Therapy was initiated with CDT and lower molecular weight heparin, then switched to once daily oral rivaroxaban. Meanwhile, steroids combined with tacrolimus were also carried on while simvastatin was discontinued. One month later, patient's symptoms were resolved and only partial thrombosis in left femoral vein was remained. CONCLUSION: The prevalence of DVT in patient with anti-SRP myopathy was rare. No well-established treatment strategy is available to manage the IMNM and DVT at the same time. The systemic anticoagulants therapy combined CDT can be an effective therapeutic approach to address extensive DVT in patient with anti-SRP myopathy.

12.
Ecotoxicol Environ Saf ; 224: 112642, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34399126

RESUMO

Quantification of source-specific health risks of PM2.5 plays an essential role in health-oriented air pollution control. However, there is limited evidence supporting the source-based risk apportionment of particle-bound metals. In this study, source-specific cancer and non-cancer risk characterization of 12 particle-bound metals was performed in the Pearl River Delta (PRD) region, China. A combination of health risk assessment model and receptor-based source apportionment modeling with positive matrix factorization (PMF) was applied for characterizing the spatial-temporal patterns for inhalation health risks of particle-bound metals in three main city clusters, inland area and coastal area in the region from December 2014 through July 2016. Results showed that the carcinogenic risk of particle-bound metals for adults (4.13 × 10-5) was higher than that for children (9.53 × 10-6) in the PRD region. The highest and significant non-carcinogenic risk was found in the northwest city cluster. Industrial emission (63.3%) were the dominant contributors to the cancer risk, while the main contributors to the non-cancer risk were the vehicle emission source (33.2%) in the dry season and industrial emission (30.8%) in the wet season. Our results provide important evidence for spatial source-specific health risks with temporal characteristics of particle-bound metals in most densely populated areas in the southern China, and suggest that reduction of industrial and vehicle emissions could facilitate more cost-effective PM2.5 control measures to improve human health.

13.
J Environ Manage ; 299: 113670, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479147

RESUMO

High ozone concentrations have adverse effects on human health and ecosystems. In recent years, the ambient ozone concentration in China has shown an upward trend, and high-quality prediction of ozone concentrations has become critical to support effective policymaking. In this study, a novel hybrid model combining wavelet decomposition (WD), a gated recurrent unit (GRU) neural network and a support vector regression (SVR) model was developed to predict the daily maximum 8 h ozone. We used the ground ozone observation data in six representative megacities across China from Jan. 1, 2015 to Jun. 15, 2020 for model training, and we used data from Jun. 15 to Dec. 31, 2020 for model testing. The results show that the developed model performs very well for megacities; against observations, the model obtains an average cross-validated R2 (coefficient of determination) ranging from 0.90 for Shanghai to 0.97 for Chengdu in the one-step predictions, thereby indicating that the model outperformed any single algorithm or other hybrid algorithms reported. The developed model can also capture high ozone pollution episodes with an average accuracy of 92% for the next five days in inland cities. This study will be useful for the environmental health community to prevent high ozone exposure more efficiently in megacities in China and shows great potential for accurate ozone prediction using machine learning approaches.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Cidades , Ecossistema , Monitoramento Ambiental , Humanos , Aprendizado de Máquina , Ozônio/análise
14.
Opt Express ; 28(17): 24452-24458, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32906986

RESUMO

Thin-film lithium niobate (LN) photonic integrated circuits (PICs) could enable ultrahigh performance in electro-optic and nonlinear optical devices. To date, realizations have been limited to chip-scale proof-of-concepts. Here we demonstrate monolithic LN PICs fabricated on 4- and 6-inch wafers with deep ultraviolet lithography and show smooth and uniform etching, achieving 0.27 dB/cm optical propagation loss on wafer-scale. Our results show that LN PICs are fundamentally scalable and can be highly cost-effective.

15.
Opt Lett ; 44(9): 2314-2317, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042212

RESUMO

Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion, and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly >10 dB/facet) has dominated the total insertion losses of typical LN photonic integrated circuits, where on-chip losses can be as low as 0.03-0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetrically guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open the door for practical integrated LN photonic circuits efficiently interfaced with optical fibers.

16.
Environ Sci Technol ; 53(9): 5027-5033, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30933482

RESUMO

Particle phase state plays a key role in gas-particle partitioning, heterogeneous and multiphase reactions, and secondary aerosol formation. In this work, the rebound fraction and chemical composition of submicron particles were simultaneously measured to investigate the particle phase state and its link to chemical composition in a subtropical coastal urban city (Shenzhen, China). Submicron particles were found to be in the liquid state for most of the measurement period in spring. During the sampling time, both high relative humidity (RH, ranged from 40% to 93%) and inorganic mass fraction in particles (62.6 ± 12.4% of dry particles, on average) resulted in abundant aerosol liquid water (43 ± 6% in the wet PM1, on average), which may liquefy the particles. Considering the high frequency of ambient RH > 60% and large inorganic mass fraction in aerosol particles, we deduced that particles were in the liquid state throughout the year in coastal urban areas, where this study was performed. The liquid phase particles may accelerate the mass transfer of reactive trace gases and multiphase reactions, thereby enhanced secondary aerosol formation, further resulting in a rapid growth in aerosol mass. Our work suggested that in regions heavily impacted by SO2 and NO x emissions, especially in developing countries, the presence of inorganics could significantly impact the phase state of ambient aerosol particles, and thus the mixing state of inorganic and organic matter should be taken into account for the investigation of the aerosol phase state in urban environments.


Assuntos
Poluentes Atmosféricos , Aerossóis , China , Cidades , Água
17.
Environ Sci Technol ; 53(24): 14222-14232, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31722173

RESUMO

To elucidate the influence of long-range transported biomass burning organic aerosols (BBOA) on the Tibetan Plateau, the molecular compositions and light absorption of HUmic-Like Substances (HULIS), major fractions of brown carbon, were characterized during the premonsoon season. Under the significant influence of biomass burning, HULIS concentrations increased to as high as 26 times of the background levels, accounting for 54% of water-soluble organic carbon (WSOC) and 50% of organic carbon (OC). The light absorption of HULIS also enhanced up to 42 times of the background levels, contributing 61% of the WSOC absorption and 50% of OC absorption. Meanwhile, elevated nitrogen-containing compounds (NOCs) among HULIS were observed. The NOCs from fresh and aged BBOA were unambiguously identified on the molecular level, through comparing with the molecular compositions of NOCs from lab-controlled and field burning experiments. N-Heterocyclic bases represent major fractions in the reduced nitrogen compounds from fresh BBOA, and nitroaromatic compounds are important groups among the oxidized nitrogen compounds from aged BBOA. The nitrogen-containing compounds, including nitroaromatics and N-heterocyclic compounds, were also important chromophores, which contributed to the enhanced light absorption of extracted HULIS during biomass burning-influenced periods.


Assuntos
Poluentes Atmosféricos , Nitrogênio , Aerossóis , Biomassa , Carbono , Monitoramento Ambiental , Material Particulado , Tibet
18.
J Environ Sci (China) ; 81: 148-155, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30975317

RESUMO

Oxygenated volatile organic compounds (OVOCs) are important precursors and products of atmospheric secondary pollution. The sources of OVOCs, however, are still quite uncertain, especially in the atmosphere with much pollution in China. To study the sources of OVOCs in rural atmospheres, a proton transfer reaction mass spectrometry (PTR-MS) was deployed at a northern rural site (WD) and a southern rural site (YMK) in China during the summer of 2014 and 2016, respectively. The continuous observation showed that the mean concentration of TVOCs (totally 17 VOCs) measured at WD (52.4 ppbv) was far higher than that at YMK (11.1 ppbv), and the OVOCs were the most abundant at both the two sites. The diurnal variations showed that local sources of OVOCs were still prominent at WD, while regional transport influenced YMK much. The photochemical age-based parameterization method was then used to quantitatively apportion the sources of ambient OVOCs. The anthropogenic primary sources at WD and YMK contributed less (2%-16%) to each OVOC species. At both the sites, the atmospheric background had a dominant contribution (~50%) to acetone and formic acid, while the anthropogenic secondary formation was the main source (~40%) of methanol and MEK. For acetaldehyde and acetic acid, the biogenic sources were their largest source (~40%) at WD, while the background (39%) and anthropogenic secondary formation (42%) were their largest sources at YMK, respectively. This study reveals the complexity of sources of OVOCs in China, which urgently needs explored further.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Compostos Orgânicos Voláteis/análise , Acetaldeído , Acetona , Atmosfera/química , China
19.
J Environ Sci (China) ; 75: 105-114, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473275

RESUMO

Oxygenated volatile organic compounds (OVOCs) are key intermediates in the atmospheric photooxidation process. To further study the primary and secondary sources of OVOCs, their ambient levels were monitored using a proton-transfer reaction mass spectrometer (PTR-MS) at an urban site in the Pearl River Delta of China. Continuous monitoring campaigns were conducted in the spring, summer, fall, and winter of 2016. Among the six types of OVOC species, the mean concentrations of methanol were the highest in each season (up to 13-20ppbv), followed by those of acetone, acetaldehyde and acetic acid (approximately 2-4ppbv), while those of formic acid and methyl ethyl ketone (MEK) were the lowest (approximately 1-2ppbv). As observed from a diurnal variation chart, the OVOCs observed in Shenzhen may have been affected by numerous factors such as their primary and secondary sources and photochemical consumption. The photochemical age-based parameterization method was used to apportion the sources of ambient OVOCs. Methanol had significant anthropogenic primary sources but negligible anthropogenic secondary sources during all of the seasons. Acetone, MEK and acetic acid were mostly attributed to anthropogenic primary sources during each season with smaller contributions from anthropogenic secondary sources. Acetaldehyde had similar contributions from both anthropogenic secondary and anthropogenic primary sources throughout the year. Meanwhile, anthropogenic primary sources contributed the most to formic acid.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos Voláteis/análise , China , Processos Fotoquímicos
20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 44(6): 642-648, 2019 Jun 28.
Artigo em Chinês | MEDLINE | ID: mdl-31304925

RESUMO

OBJECTIVE: To investigate the correlation of different types of urinary abnormalities or different proteinuria and hematuria with the pathological injury of kidney in IgA nephropathy with isolated hematuria and/or mild proteinuria.
 Methods: Patients with primary IgA nephropathy, isolated hematuria and/or mild proteinuria were enrolled in the Department of Nephrology, the Second Xiangya Hospital, Central South University from January 2013 to January 2018. According to the difference of red blood cell count in urinary sediment and quantitative of 24-hour urinary protein (24 h-UP) during renal biopsy, the patients were grouped in 3 ways: a simple hematuria group, a hematuria and proteinuria group, and a simple proteinuria group; a proteinuria I group, a proteinuria II group, and a proteinuria III group; a hematuria I group, a hematuria II group, and a hematuria III group. The clinical parameters such as age, mean arterial pressure, blood urea nitrogen, serum creatinine, blood uric acid, 24 h-UP, and renal pathological damage were compared.
 Results: A total of 157 patients met the inclusion criteria, including 71 males and 86 females. The most common pathological type was focal and/or segmental glomerulosclerosis. The Lee's classification were dominated by grade III and IV, and the renal pathological injury was heavy. Immunoglobulin deposition was dominated by simple IgA deposition. The most common fluorescence intensity of IgA deposition was +++. 97 (61.78%) patients were accompanied by complement deposition and were mainly composed of simple complement C3 deposition. There were 18 patients (11.47%) in the simple hematuria group, 111 patients (70.70%) in the hematuria and proteinuria group, and 28 patients (17.83%) in the simple proteinuria group. Compared with the simple hematuria group, the proportion of patients with mild injury was lower in the simple proteinuria group, and the proportion of patients with moderate-to-severe injuries was increased (χ2=7.053, P=0.008). Compared with the hematuria and proteinuria group, the proportion of patients with mild injury was lower in the simple proteinuria group, and the proportion of patients with moderate-to-severe injury was increased (χ2=4.294, P=0.038). Compared with the proteinuria I group, the proportion of patients with mild injury was lower in the proteinuria III group, and the proportion of patients with moderate-to-severe injury was increased (χ2=5.433, P=0.020). There was no significant difference in the proportion of patients with renal pathological injury among different hematuria groups (P>0.05).
 Conclusion: The clinical manifestations of patients with IgA nephropathy with hematuria and/or mild proteinuria are inconsistent with renal pathological damage. Some patients with mild clinical manifestations have severe renal pathological damage and the renal pathological damage is more serious in simple proteinuria. The more proteinuria, the heavier the renal pathological damage.


Assuntos
Glomerulonefrite por IGA , Creatinina , Feminino , Hematúria , Humanos , Rim , Masculino , Proteinúria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA