Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Neurosci ; 44(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37989592

RESUMO

Sensory systems are shaped in postnatal life by the refinement of synaptic connectivity. In the dorsal horn of the spinal cord, somatosensory circuits undergo postnatal activity-dependent reorganization, including the refinement of primary afferent A-fiber terminals from superficial to deeper spinal dorsal horn laminae which is accompanied by decreases in cutaneous sensitivity. Here, we show in the mouse that microglia, the resident immune cells in the CNS, phagocytose A-fiber terminals in superficial laminae in the first weeks of life. Genetic perturbation of microglial engulfment during the initial postnatal period in either sex prevents the normal process of A-fiber refinement and elimination, resulting in an altered sensitivity of dorsal horn cells to dynamic tactile cutaneous stimulation, and behavioral hypersensitivity to dynamic touch. Thus, functional microglia are necessary for the normal postnatal development of dorsal horn sensory circuits. In the absence of microglial engulfment, superfluous A-fiber projections remain in the dorsal horn, and the balance of sensory connectivity is disrupted, leading to lifelong hypersensitivity to dynamic touch.


Assuntos
Percepção do Tato , Tato , Animais , Camundongos , Microglia , Corno Dorsal da Medula Espinal , Fibras Nervosas Mielinizadas/fisiologia , Medula Espinal/fisiologia , Células do Corno Posterior
2.
Invest New Drugs ; 40(6): 1350-1353, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35666357

RESUMO

In resected non-small cell lung cancer (NSCLC), ALK rearrangements are associated with worse recurrence-free survival (RFS) than other driver genes. In addition, the micropapillary pattern of NSCLC is associated with a poor prognosis. In recent years, crizotinib tyrosine kinase inhibitors (TKIs) have been widely used to treat patients with advanced NSCLC with ALK fusion. Patient survival outcomes have become highly promising, reflecting the necessity of exploring the application of ALK-TKIs in resected, early stage NSCLC with ALK rearrangements. A 60-year-old Chinese man was diagnosed with stage IIB lung adenocarcinoma harboring a novel SLC8A1/LINC01913 intergenic region-ALK fusion identified by NGS and validated by immunohistochemical staining (IHC) and fluorescence in situ hybridization (FISH). Crizotinib (250 mg orally once daily) was administered to the patient following surgery. The patient remained relapse-free after four months and seven months. This report provided a valuable treatment plan for early lung adenocarcinoma patients with high risks to prevent a postoperative recurrence.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Crizotinibe/uso terapêutico , Crizotinibe/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Hibridização in Situ Fluorescente , Quinase do Linfoma Anaplásico/genética , DNA Intergênico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Imuno-Histoquímica , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas de Fusão Oncogênica/genética
3.
J Proteome Res ; 20(3): 1488-1508, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33284006

RESUMO

Peripheral nerve repair and functional recovery depend on the rate of nerve regeneration and the quality of target reinnervation. It is important to fully understand the cellular and molecular basis underlying the specificity of peripheral nerve regeneration, which means achieving corresponding correct pathfinding and accurate target reinnervation for regrowing motor and sensory axons. In this study, a quantitative proteomic technique, based on isobaric tags for relative and absolute quantitation (iTRAQ), was used to profile the protein expression pattern between single motor and sensory nerves at 14 days after peripheral nerve transection. Among a total of 1259 proteins identified, 176 proteins showed the differential expressions between injured motor and sensory nerves. Quantitative RT-PCR and western blot analysis were applied to validate the proteomic data on representative differentially expressed proteins. Functional categorization indicated that differentially expressed proteins were linked to a diverse array of molecular functions, including axonogenesis, response to axon injury, tissue remodeling, axon ensheathment, cell proliferation and adhesion, vesicle-mediated transport, response to oxidative stress, internal signal cascade, and macromolecular complex assembly, which might play an essential role in peripheral motor and sensory nerve regeneration. Overall, we hope that the proteomic database obtained in this study could serve as a solid foundation for the comprehensive investigation of differentially expressed proteins between injured motor and sensory nerves and for the mechanism elucidation of the specificity of peripheral nerve regeneration. Data are available via ProteomeXchange with identifier PXD022097.


Assuntos
Traumatismos dos Nervos Periféricos , Axônios , Humanos , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/genética , Nervos Periféricos , Proteômica
4.
J Neurosci ; 39(35): 6848-6864, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31270160

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) remains a pressing clinical problem; however, our understanding of sexual dimorphism in CIPN remains unclear. Emerging studies indicate a sex-dimorphic role of Toll-like receptor 4 (TLR4) in driving neuropathic pain. In this study, we examined the role of TLR9 in CIPN induced by paclitaxel in WT and Tlr9 mutant mice of both sexes. Baseline pain sensitivity was not affected in either Tlr9 mutant male or female mice. Intraplantar and intrathecal injection of the TLR9 agonist ODN 1826 induced mechanical allodynia in both sexes of WT and Tlr4 KO mice but failed to do so in Tlr9 mutant mice. Moreover, Trpv1 KO or C-fiber blockade by resiniferatoxin failed to affect intraplantar ODN 1826-induced mechanical allodynia. Interestingly, the development of paclitaxel-evoked mechanical allodynia was attenuated by TLR9 antagonism or Tlr9 mutation only in male mice. Paclitaxel-induced CIPN caused macrophage infiltration to DRGs in both sexes, and this infiltration was not affected by Tlr9 mutation. Paclitaxel treatment also upregulated TNF and CXCL1 in macrophage cultures and DRG tissues in both sexes, but these changes were compromised by Tlr9 mutation in male animals. Intraplantar adoptive transfer of paclitaxel-activated macrophages evoked mechanical allodynia in both sexes, which was compromised by Tlr9 mutation or by treatment with TLR9 inhibitor only in male animals. Finally, TLR9 antagonism reduced paclitaxel-induced mechanical allodynia in female nude mice (T-cell and B-cell deficient). Together, these findings reveal sex-dimorphic macrophage TLR9 signaling in chemotherapy-induced neuropathic pain.SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect in cancer patients undergoing clinical chemotherapy treatment regimens. The role of sex dimorphism with regards to the mechanisms of CIPN and analgesia against CIPN remains unclear. Previous studies have found that the infiltration of immune cells, such as macrophages into DRGs and their subsequent activation promote CIPN. Interestingly, the contribution of microglia to CIPN appears to be limited. Here, we show that macrophage TLR9 signaling promotes CIPN in male mice only. This study suggests that pathways in macrophages may be sex-dimorphic in CIPN. Our findings provide new insights into the role of macrophage signaling mechanisms underlying sex dimorphism in CIPN, which may inspire the development of more precise and effective therapies.


Assuntos
Antineoplásicos/efeitos adversos , Hiperalgesia/metabolismo , Macrófagos/metabolismo , Neuralgia/metabolismo , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Masculino , Camundongos , Neuralgia/induzido quimicamente , Neuralgia/genética , Medição da Dor , Limiar da Dor , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Receptor Toll-Like 9/genética
5.
J Cell Mol Med ; 24(1): 342-355, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654502

RESUMO

Recent studies indicate circular RNAs are related to dysregulation of vascular endothelial cell function, yet the underlying mechanisms have remained elusive. Here, we characterized the functional role of circular RNA USP1 (circ-USP1) in the regulation of the blood-tumour barrier (BTB) permeability and the potential mechanisms. In the current study, the circ-USP1 expressing level was up-regulated in glioma cerebral microvascular endothelial cells (GECs) of the BTB model in vitro. Knockdown of circ-USP1 disrupted the barrier integrity, increased its permeability as well as reduced tight junction-related protein claudin-5, occludin and ZO-1 expressions in GECs. Bioinformatic prediction and luciferase assay indicated that circ-USP1 bound to miR-194-5p and suppressed its activity. MiR-194-5p contributed to circ-USP1 knockdown-induced increase of BTB permeability via targeting and down-regulating transcription factor FLI1. Furthermore, FLI1 regulated the expressions of claudin-5, occludin and ZO-1 in GECs through binding to their promoter regions. Single or combined treatment of circ-USP1 and miR-194-5p effectively promoted anti-tumour drug doxorubicin across BTB to induce apoptosis of glioma cells. Overall, this present study identified the crucial regulation of circ-USP1 on BTB permeability via miR-194-5p/FLI1 axis-mediated regulation of tight junction proteins, which might facilitate the development of therapeutics against human gliomas.


Assuntos
Glioma/sangue , Glioma/patologia , MicroRNAs/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , RNA Circular/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Glioma/genética , Células HEK293 , Humanos , MicroRNAs/genética , Permeabilidade , Proteínas de Junções Íntimas/metabolismo
7.
Mol Cancer ; 16(1): 171, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29132362

RESUMO

BACKGROUND: Accumulating evidence has highlighted the potential role of long non-coding RNAs (lncRNAs) in the biological behaviors of glioblastoma stem cells (GSCs). Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-SOX2OT on the biological behaviors of GSCs. RESULTS: Real-time PCR demonstrated that SOX2OT expression was up-regulated in glioma tissues and GSCs. Knockdown of SOX2OT inhibited the proliferation, migration and invasion of GSCs, and promoted GSCs apoptosis. MiR-194-5p and miR-122 were down-regulated in human glioma tissues and GSCs, and miR-194-5p and miR-122 respectively exerted tumor-suppressive functions by inhibiting the proliferation, migration and invasion of GSCs, while promoting GSCs apoptosis. Knockdown of SOX2OT significantly increased the expression of miR-194-5p and miR-122 in GSCs. Dual-luciferase reporter assay revealed that SOX2OT bound to both miR-194-5p and miR-122. SOX3 and TDGF-1 were up-regulated in human glioma tissues and GSCs. Knockdown of SOX3 inhibited the proliferation, migration and invasion of GSCs, promoted GSCs apoptosis, and decreased TDGF-1 mRNA and protein expression through direct binding to the TDGF-1 promoter. Over-expression of miR-194-5p and miR-122 decreased the mRNA and protein expression of SOX3 by targeting its 3'UTR. Knockdown of TDGF-1 inhibited the proliferation, migration and invasion of GSCs, promoted GSCs apoptosis, and inhibited the JAK/STAT signaling pathway. Furthermore, SOX3 knockdown also inhibited the SOX2OT expression through direct binding to the SOX2OT promoter and formed a positive feedback loop. CONCLUSION: This study is the first to demonstrate that the SOX2OT-miR-194-5p/miR-122-SOX3-TDGF-1 pathway forms a positive feedback loop and regulates the biological behaviors of GSCs, and these findings might provide a novel strategy for glioma treatment.


Assuntos
Neoplasias Encefálicas/patologia , Proteínas Ligadas por GPI/genética , Glioblastoma/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , Fatores de Transcrição SOXB1/genética , Regulação para Cima , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Retroalimentação Fisiológica , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXB1/metabolismo
10.
Pharmacology ; 100(5-6): 292-300, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848223

RESUMO

This study analyzes the sepsis healing therapeutic potential of carnosine against experimentally sepsis-induced male albino rats. Carnosine in 2 different doses, 25 mg/kg and 50 mg/kg, were administered for 30 consecutive days. At the end of the treatment, lipid peroxidation, catalase, superoxide dismutase, glutathione peroxidase and myeloperoxidase activities were measured. Lungs weight and total protein content were determined in the bronchoalveolar fluid (BALF). Cytokines such as macrophage inhibitory factor (MIF), interleukin-8 (IL-8) and tumour necrosis factor-alpha (TNF-α) were determined in the BALF. In addition, the histopathological analysis was also carried out to understand the effect of carnosine in the cellular architecture. Carnosine treatment significantly renormalized the lipid peroxidation and other antioxidant enzymes. IL-ß, TNF-α, and MIF were found to be reduced after carnosine treatment. After carnosine treatment, the intensity of sepsis was significantly reduced evidenced by histopathological analysis. In western blot analysis, carnosine treatment causes the upregulation of IκBα together with the downregulation of the expressions of p65 and p-IKKα/ß (Ser 180/Ser 181).


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Carnosina/farmacologia , Substâncias Protetoras/farmacologia , Sepse/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Interleucina-8/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Ratos , Ratos Wistar , Sepse/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
NPJ Precis Oncol ; 8(1): 157, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060449

RESUMO

Gastrointestinal stromal tumor (GIST) is the most common mesenchymal original tumor in gastrointestinal (GI) tract and is considered to have varying malignant potential. With the advancement of computer science, radiomics technology and deep learning had been applied in medical researches. It's vital to construct a more accurate and reliable multimodal predictive model for recurrence-free survival (RFS) aiding for clinical decision-making. A total of 254 patients underwent surgery and pathologically diagnosed with GIST in The First Hospital of China Medical University from 2019 to 2022 were included in the study. Preoperative contrast enhanced computerized tomography (CE-CT) and hematoxylin/eosin (H&E) stained whole slide images (WSI) were acquired for analysis. In the present study, we constructed a sum of 11 models while the multimodal model (average C-index of 0.917 on validation set in 10-fold cross validation) performed the best on external validation cohort with an average C-index of 0.864. The multimodal model also reached statistical significance when validated in the external validation cohort (n = 42) with a p-value of 0.0088 which pertained to the recurrence-free survival (RFS) comparison between the high and low groups using the optimal threshold on the predictive score. We also explored the biological significance of radiomics and pathomics features by visualization and quantitative analysis. In the present study, we constructed a multimodal model predicting RFS of GIST which was prior over unimodal models. We also proposed hypothesis on the correlation between morphology of tumor cell and prognosis.

12.
Bioact Mater ; 40: 378-395, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38978801

RESUMO

Extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs) promote neurite outgrowth in culture and enhance peripheral nerve regeneration in rats. This study aimed at expanding the application of SKP-SC-EVs in nerve grafting by creating a chitosan/PLGA-based, SKP-SC-EVs-containing tissue engineered nerve graft (TENG) to bridge a 40-mm long sciatic nerve defect in dogs. SKP-SC-EVs contained in TENGs significantly accelerated the recovery of hind limb motor and electrophysiological functions, supported the outgrowth and myelination of regenerated axons, and alleviated the denervation-induced atrophy of target muscles in dogs. To clarify the underlying molecular mechanism, we observed that SKP-SC-EVs were rich in a variety of miRNAs linked to the axon growth of neurons, and miR-30b-5p was the most important among others. We further noted that miR-30b-5p contained within SKP-SC-EVs exerted nerve regeneration-promoting effects by targeting the Sin3a/HDAC complex and activating the phosphorylation of ERK, STAT3 or CREB. Our findings suggested that SKP-SC-EVs-incorporating TENGs represent a novel type of bioactive material with potential application for peripheral nerve repair in the clinic.

13.
Regen Ther ; 27: 365-380, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38694448

RESUMO

Brachial plexus injury (BPI) with motor neurons (MNs) damage still remain poor recovery in preclinical research and clinical therapy, while cell-based therapy approaches emerged as novel strategies. Previous work of rat skin precursor-derived Schwann cells (SKP-SCs) provided substantial foundation for repairing peripheral nerve injury (PNI). Given that, our present work focused on exploring the repair efficacy and possible mechanisms of SKP-SCs implantation on rat BPI combined with neurorrhaphy post-neurotomy. Results indicated the significant locomotive and sensory function recovery, with improved morphological remodeling of regenerated nerves and angiogenesis, as well as amelioration of target muscles atrophy and motor endplate degeneration. Besides, MNs could restore from oxygen-glucose-deprivation (OGD) injury upon SKP-SCs-sourced secretome treatment, implying the underlying paracrine mechanisms. Moreover, rat cytokine array assay detected 67 cytokines from SKP-SC-secretome, and bioinformatic analyses of screened 32 cytokines presented multiple functional clusters covering diverse cell types, including inflammatory cells, Schwann cells, vascular endothelial cells (VECs), neurons, and SKP-SCs themselves, relating distinct biological processes to nerve regeneration. Especially, a panel of hypoxia-responsive cytokines (HRCK), can participate into multicellular biological process regulation for permissive regeneration milieu, which underscored the benefits of SKP-SCs and sourced secretome, facilitating the chorus of nerve regenerative microenvironment. Furthermore, platelet-derived growth factor-AA (PDGF-AA) and vascular endothelial growth factor-A (VEGF-A) were outstanding cytokines involved with nerve regenerative microenvironment regulating, with significantly elevated mRNA expression level in hypoxia-responsive SKP-SCs. Altogether, through recapitulating the implanted SKP-SCs and derived secretome as niche sensor and paracrine transmitters respectively, HRCK would be further excavated as molecular underpinning of the neural recuperative mechanizations for efficient cell therapy; meanwhile, the analysis paradigm in this study validated and anticipated the actions and mechanisms of SKP-SCs on traumatic BPI repair, and was beneficial to identify promising bioactive molecule cocktail and signaling targets for cell-free therapy strategy on neural repair and regeneration.

14.
J Clin Invest ; 134(9)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530364

RESUMO

G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here, we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs) and is selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX- and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is coexpressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the proresolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10- or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein's function. Thus, GPR37L1 in SGCs offers a therapeutic target for the protection of neuropathy and chronic pain.


Assuntos
Ácidos Docosa-Hexaenoicos , Gânglios Espinais , Neuroglia , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Gânglios Espinais/metabolismo , Homeostase , Camundongos Knockout , Camundongos Transgênicos , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/patologia , Neuroglia/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
15.
Exp Neurol ; 376: 114750, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492636

RESUMO

Nerve injury often leads to severe dysfunction because of the lack of axon regeneration in adult mammal. Intriguingly a series of extracellular vesicles (EVs) have the obvious ability to accelerate the nerve repair. However, the detailed molecular mechanisms to describe that EVs switch neuron from a transmitter to a regenerative state have not been elucidated. This study elucidated the microRNA (miRNA) expression profiles of two types of EVs that promote nerve regeneration. The functions of these miRNAs were screened in vitro. Among the 12 overlapping miRNAs, miR-25-3p was selected for further analysis as it markedly promoted axon regeneration both in vivo and in vitro. Furthermore, knockdown experiments confirmed that PTEN and Klf4, which are the major inhibitors of axon regeneration, were the direct targets of miR-25-3p in dorsal root ganglion (DRG) neurons. The utilization of luciferase reporter assays and functional tests provided evidence that miR-25-3p enhances axon regeneration by targeting Tgif1. Additionally, miR-25-3p upregulated the phosphorylation of Erk. Furthermore, Rapamycin modulated the expression of miR-25-3p in DRG neurons. Finally, the pro-axon regeneration effects of EVs were confirmed by overexpressing miR-25-3p and Tgif1 knockdown in the optic nerve crush model. Thus, the enrichment of miR-25-3p in EVs suggests that it regulates axon regeneration, proving a potential cell-free treatment strategy for nerve injury.


Assuntos
Axônios , Vesículas Extracelulares , Gânglios Espinais , Proteínas de Homeodomínio , MicroRNAs , Regeneração Nervosa , Células de Schwann , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Regeneração Nervosa/fisiologia , Regeneração Nervosa/genética , Vesículas Extracelulares/metabolismo , Axônios/fisiologia , Células de Schwann/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Pele/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos Endogâmicos C57BL , Células-Tronco/metabolismo
16.
Front Immunol ; 14: 1124356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845137

RESUMO

Excessive inflammation has been implicated in autism spectrum disorder (ASD), but the underlying mechanisms have not been fully studied. SHANK3 is a synaptic scaffolding protein and mutations of SHANK3 are involved in ASD. Shank3 expression in dorsal root ganglion sensory neurons also regulates heat pain and touch. However, the role of Shank3 in the vagus system remains unknown. We induced systemic inflammation by lipopolysaccharide (LPS) and measured body temperature and serum IL-6 levels in mice. We found that homozygous and heterozygous Shank3 deficiency, but not Shank2 and Trpv1 deficiency, aggravates hypothermia, systemic inflammation (serum IL-6 levels), and sepsis mortality in mice, induced by lipopolysaccharide (LPS). Furthermore, these deficits can be recapitulated by specific deletion of Shank3 in Nav1.8-expressing sensory neurons in conditional knockout (CKO) mice or by selective knockdown of Shank3 or Trpm2 in vagal sensory neurons in nodose ganglion (NG). Mice with Shank3 deficiency have normal basal core temperature but fail to adjust body temperature after perturbations with lower or higher body temperatures or auricular vagus nerve stimulation. In situ hybridization with RNAscope revealed that Shank3 is broadly expressed by vagal sensory neurons and this expression was largely lost in Shank3 cKO mice. Mechanistically, Shank3 regulates the expression of Trpm2 in NG, as Trpm2 but not Trpv1 mRNA levels in NG were significantly reduced in Shank3 KO mice. Our findings demonstrated a novel molecular mechanism by which Shank3 in vagal sensory neurons regulates body temperature, inflammation, and sepsis. We also provided new insights into inflammation dysregulation in ASD.


Assuntos
Transtorno do Espectro Autista , Sepse , Canais de Cátion TRPM , Camundongos , Animais , Temperatura Corporal , Lipopolissacarídeos , Interleucina-6 , Células Receptoras Sensoriais , Inflamação , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética
17.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36520531

RESUMO

Our understanding of neuropathic itch is limited due to a lack of relevant animal models. Patients with cutaneous T cell lymphoma (CTCL) experience severe itching. Here, we characterize a mouse model of chronic itch with remarkable lymphoma growth, immune cell accumulation, and persistent pruritus. Intradermal CTCL inoculation produced time-dependent changes in nerve innervations in lymphoma-bearing skin. In the early phase (20 days), CTCL caused hyperinnervations in the epidermis. However, chronic itch was associated with loss of epidermal nerve fibers in the late phases (40 and 60 days). CTCL was also characterized by marked nerve innervations in mouse lymphoma. Blockade of C-fibers reduced pruritus at early and late phases, whereas blockade of A-fibers only suppressed late-phase itch. Intrathecal (i.t.) gabapentin injection reduced late-phase, but not early-phase, pruritus. IL-31 was upregulated in mouse lymphoma, whereas its receptor Il31ra was persistently upregulated in Trpv1-expressing sensory neurons in mice with CTCL. Intratumoral anti-IL-31 treatment effectively suppressed CTCL-induced scratching and alloknesis (mechanical itch). Finally, i.t. administration of a TLR4 antagonist attenuated pruritus in early and late phases and in both sexes. Collectively, we have established a mouse model of neuropathic and cancer itch with relevance to human disease. Our findings also suggest distinct mechanisms underlying acute, chronic, and neuropathic itch.


Assuntos
Linfoma , Prurido , Animais , Feminino , Masculino , Camundongos , Linfoma/complicações , Prurido/tratamento farmacológico , Prurido/etiologia , Células Receptoras Sensoriais , Pele/patologia , Modelos Animais de Doenças
18.
Exp Neurol ; 361: 114314, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36586550

RESUMO

Functional reconstruction after peripheral nerve injury depends on the ability of the regenerated sensory and motor axons to re-innervate the suitable target organs. Therefore, it is essential to explore the cellular mechanisms of peripheral nerve-specific regeneration. In a previous study, we found that sensory and motor fibroblasts can guide Schwann cells to migrate towards the same phenotype. In the present paper, we analyzed the different effects of sensory and motor fibroblasts on sensory or motor neurons. The fibroblasts and neurons co-culture assay showed that compared with motor fibroblasts, sensory fibroblasts promote the neurite outgrowth of sensory neurons on a larger scale, and vice versa. Furthermore, a higher proportion of sensory or motor fibroblasts migrated towards their respective (sensory or motor) neurons. Meanwhile, a comparative proteomic approach was applied to obtain the protein expression profiles of sensory and motor fibroblasts. Among a total of 2597 overlapping proteins identified, we counted 148 differentially expressed items, of those 116 had a significantly higher expression in sensory fibroblasts, and 32 had a significantly greater expression in motor fibroblasts. Functional categorization revealed that differentially expressed proteins were involved in regeneration, axon guidance and cytoskeleton organization, all of which might play a critical role in peripheral nerve-specific regeneration. After nerve crush injury, ITB1 protein expression decreased significantly in motor nerves and increased in sensory nerves. In vitro, ITB1 significantly promoted axonal regeneration of sensory neurons, but had no significant effect on motor neurons. Overall, sensory and motor fibroblasts express different proteins and exert different growth promoting effects on sensory and motor neurons. This comparative proteomic database of sensory and motor fibroblasts could provide future directions for in-depth research on peripheral nerve-specific regeneration. Data are available via ProteomeXchange with identifier PXD034827.


Assuntos
Traumatismos dos Nervos Periféricos , Proteômica , Humanos , Neurônios Motores/fisiologia , Axônios/fisiologia , Nervos Periféricos , Células de Schwann , Regeneração Nervosa/fisiologia , Células Receptoras Sensoriais/fisiologia , Fibroblastos
19.
Int J Surg ; 109(4): 925-935, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36974713

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the second most common cause of cancer-related death (9.4% of the 9.9 million cancer deaths). However, CRC develops slowly, and early detection and intervention can effectively improve the survival rate and quality of life. Although colonoscopy can detect and diagnose CRC, it is unsuitable for CRC screening in average-risk populations. Some commercial kits based on DNA mutation or methylation are approved for screening, but the low sensitivity for advanced adenoma or early-stage CRC would limit the applications. MAIN RESULTS: Recently, researchers have focused on developing noninvasive or minimally invasive, easily accessible biomarkers with higher sensitivity and accuracy for CRC screening. Numerous reports describe advances in biomarkers, including DNA mutations and methylation, mRNA and miRNA, gut microbes, and metabolites, as well as low-throughput multiomics panels. In small cohorts, the specificity and sensitivity improved when fecal immunochemical testing combined with other biomarkers; further verification in large cohorts is expected. In addition, the continuous improvement of laboratory technology has also improved the sensitivity of detection technology, such as PCR, and the application of CRISPR/Cas technology. Besides, artificial intelligence has extensively promoted the mining of biomarkers. Machine learning was performed to construct a diagnosis model for CRC screening based on the cfDNA fragment features from whole-genome sequencing data. In another study, multiomics markers, including cfDNA, epigenetic, and protein signals, were also discovered by machine learning. Finally, advancements in sensor technology promote the applicability of volatile organic compounds in CRC early detection. CONCLUSION: Here, the authors review advances in early detection and screening of CRC based on different biomarker types. Most studies reported optimistic findings based on preliminary research, and prospective clinical studies are ongoing. These promising biomarkers are expected to more accurately identify early-stage patients with CRC and be applied in the future.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Humanos , Estudos Prospectivos , Inteligência Artificial , Qualidade de Vida , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Detecção Precoce de Câncer , DNA , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética
20.
Neuron ; 111(17): 2709-2726.e9, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37348508

RESUMO

Programmed death protein 1 (PD-1) and its ligand PD-L1 constitute an immune checkpoint pathway. We report that neuronal PD-1 signaling regulates learning/memory in health and disease. Mice lacking PD-1 (encoded by Pdcd1) exhibit enhanced long-term potentiation (LTP) and memory. Intraventricular administration of anti-mouse PD-1 monoclonal antibody (RMP1-14) potentiated learning and memory. Selective deletion of PD-1 in excitatory neurons (but not microglia) also enhances LTP and memory. Traumatic brain injury (TBI) impairs learning and memory, which is rescued by Pdcd1 deletion or intraventricular PD-1 blockade. Conversely, re-expression of Pdcd1 in PD-1-deficient hippocampal neurons suppresses memory and LTP. Exogenous PD-L1 suppresses learning/memory in mice and the excitability of mouse and NHP hippocampal neurons through PD-1. Notably, neuronal activation suppresses PD-L1 secretion, and PD-L1/PD-1 signaling is distinctly regulated by learning and TBI. Thus, conditions that reduce PD-L1 levels or PD-1 signaling could promote memory in both physiological and pathological conditions.


Assuntos
Antígeno B7-H1 , Lesões Encefálicas Traumáticas , Humanos , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Aprendizagem , Hipocampo/metabolismo , Anticorpos Monoclonais/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA