Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Nature ; 600(7887): 81-85, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853456

RESUMO

Understanding the structure and dynamic process of water at the solid-liquid interface is an extremely important topic in surface science, energy science and catalysis1-3. As model catalysts, atomically flat single-crystal electrodes exhibit well-defined surface and electric field properties, and therefore may be used to elucidate the relationship between structure and electrocatalytic activity at the atomic level4,5. Hence, studying interfacial water behaviour on single-crystal surfaces provides a framework for understanding electrocatalysis6,7. However, interfacial water is notoriously difficult to probe owing to interference from bulk water and the complexity of interfacial environments8. Here, we use electrochemical, in situ Raman spectroscopic and computational techniques to investigate the interfacial water on atomically flat Pd single-crystal surfaces. Direct spectral evidence reveals that interfacial water consists of hydrogen-bonded and hydrated Na+ ion water. At hydrogen evolution reaction (HER) potentials, dynamic changes in the structure of interfacial water were observed from a random distribution to an ordered structure due to bias potential and Na+ ion cooperation. Structurally ordered interfacial water facilitated high-efficiency electron transfer across the interface, resulting in higher HER rates. The electrolytes and electrode surface effects on interfacial water were also probed and found to affect water structure. Therefore, through local cation tuning strategies, we anticipate that these results may be generalized to enable ordered interfacial water to improve electrocatalytic reaction rates.

2.
J Proteome Res ; 23(5): 1713-1724, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38648079

RESUMO

Non-small-cell lung cancer (NSCLC), a common malignant tumor, requires deeper pathogenesis investigation. Autophagy is an evolutionarily conserved lysosomal degradation process that is frequently blocked during cancer progression. It is an urgent need to determine the novel autophagy-associated regulators in NSCLC. Here, we found that pirin was upregulated in NSCLC, and its expression was positively correlated with poor prognosis. Overexpression of pirin inhibited autophagy and promoted NSCLC proliferation. We then performed data-independent acquisition-based quantitative proteomics to identify the differentially expressed proteins (DEPs) in pirin-overexpression (OE) or pirin-knockdown (KD) cells. Among the pirin-regulated DEPs, ornithine decarboxylase 1 (ODC1) was downregulated in pirin-KD cells while upregulated along with pirin overexpression. ODC1 depletion reversed the pirin-induced autophagy inhibition and pro-proliferation effect in A549 and H460 cells. Immunohistochemistry showed that ODC1 was highly expressed in NSCLC cancer tissues and positively related with pirin. Notably, NSCLC patients with pirinhigh/ODC1high had a higher risk in terms of overall survival. In summary, we identified pirin and ODC1 as a novel cluster of prognostic biomarkers for NSCLC and highlighted the potential oncogenic role of the pirin/ODC1/autophagy axis in this cancer type. Targeting this pathway represents a possible therapeutic approach to treat NSCLC.


Assuntos
Autofagia , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Progressão da Doença , Neoplasias Pulmonares , Ornitina Descarboxilase , Feminino , Humanos , Masculino , Células A549 , Autofagia/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Ornitina Descarboxilase/metabolismo , Ornitina Descarboxilase/genética , Prognóstico , Regulação para Cima
3.
Chirality ; 36(2): e23634, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38057950

RESUMO

To investigate the thermodynamic and molecular self-assembly mechanism of trans-1,2-cyclohexane dicarboxylic acid containing two carboxylic acid groups in the chiral resolution process, (S)-phenylethylamine was used as the chiral resolving agent. Two stoichiometric salts were formed when the raw materials were fed at different molar ratios: cyclohexane dicarboxylate monophenylethylamine salt and cyclohexane dicarboxylate diphenylethylamine salt. When the molar ratio of the (S)-phenylethylamine to trans-1,2-cyclohexane dicarboxylic acid was less than 3:1, trans-(1S,2S)-cyclohexane dicarboxylic acid was obtained with 97 e.e% purity. But when the molar ratio exceeded 3:1, the product was the racemic trans-(1,2)-cyclohexane dicarboxylic acid. In addition, single crystal structures of more soluble mono-salt, less soluble mono-salt, and less soluble di-salt were obtained. The weak intermolecular interactions and the way of the molecules packing in the crystals were analyzed. The hydrogen bond was stronger in the less soluble salt than that in the more soluble salt. And a "lock-and-key" structure in the hydrophobic layers makes it more tightly packed through the van der Waals interaction, which is responsible for the stability of less soluble salts.

4.
Chirality ; 36(5): e23674, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699859

RESUMO

The separation of chiral drugs continues to pose a significant challenge. However, in recent years, the emergence of membrane-based chiral separation has shown promising effectiveness due to its environmentally friendly, energy-efficient, and cost-effective characteristics. In this study, we prepared chiral composite membrane via interfacial polymerization (IP), utilizing ß-cyclodextrin (ß-CD) and piperazine (PIP) as mixed monomers in the aqueous phase. The chiral separation process was facilitated by ß-CD, serving as a chiral selective agent. The resulting membrane were characterized using SEM, FT-IR, and XPS. Subsequently, the chiral separation performance of the membrane for DL-tryptophan (Trp) was investigated. Lastly, the water flux, dye rejection, and stability of the membrane were also examined. The results showed that the optimized chiral PIP0.5ß-CD0.5 membrane achieved an enantiomeric excess percentage (ee%) of 43.0% for D-Trp, with a solute flux of 66.18 nmol·cm-2·h-1, and maintained a good chiral separation stability. Additionally, the membrane demonstrated positive performance in the selective separation of mixed dyes, allowing for steady operation over a long period of time. This study offers fresh insights into membrane-based chiral separations.

5.
Chirality ; 36(5): e23672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693625

RESUMO

Hydroxychloroquine (HCQ), 2-([4-([7-Chloro-4-quinolyl]amino)pentyl]ethylamino)ethanol, exhibited significant biological activity, while its side effects cannot be overlooked. The RP-HPLC enantio-separation was investigated for cost-effective and convenient optical purity analysis of HCQ. The thermodynamic resolution of Rac-HCQ, driven by enthalpy and entropy, was achieved on the C18 column using Carboxymethyl-ß-cyclodextrin (CM-ß-CD) as the chiral mobile phase agent (CMPA). The effects of CCM-ß-CD, pH, and triethylamine (TEA) V% on the enantio-separation process were explored. Under the optimum conditions at 24°C, the retention times for the two enantiomers were t R 1 = 29.39 min $$ {t}_{R1}=29.39\ \min $$ and t R 2 = 32.42 min $$ {t}_{R2}=32.42\ \min $$ , resulting in R s = 1.87 $$ {R}_s=1.87 $$ . The resolution via diastereomeric salt formation of Rac-HCQ was developed to obtain the active pharmaceutical ingredient of single enantiomer S-HCQ. Di-p-Anisoyl-L-Tartaric Acid (L-DATA) was proved effective as the resolution agent for Rac-HCQ. Surprisingly, it was found that refluxing time was a key fact affecting the resolution efficiency, which meant the kinetic dominate during the process of the resolution. Four factors-solvent volume, refluxing time, filtration temperature, and molar ratio-were optimized using the single-factor method and the response surface method. Two cubic models were established, and the reliability was subsequently verified. Under the optimal conditions, the less soluble salt of 2L-DATA:S-HCQ was obtained with a yield of 96.9% and optical purity of 63.0%. The optical purity of this less soluble salt increases to 99.0% with a yield of 74.2% after three rounds recrystallization.


Assuntos
Hidroxicloroquina , Hidroxicloroquina/química , Estereoisomerismo , Cromatografia Líquida de Alta Pressão/métodos , Concentração de Íons de Hidrogênio , beta-Ciclodextrinas/química , Cromatografia de Fase Reversa/métodos , Etilaminas/química , Termodinâmica , Sais/química
6.
Eur Spine J ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878173

RESUMO

PURPOSE: To evaluate the actual change in clinical hip pain and hip migration after operation for non-ambulatory flaccid neuromuscular (NM) scoliosis and investigate whether there is an association between hip migration and coronal/sagittal pelvic tilt (CO-PT/SA-PT). PATIENTS AND METHODS: This retrospective, single-center, observational study evaluated a total of 134 patients with non-ambulatory flaccid neuromuscular scoliosis who underwent surgery performed by a single surgeon between 2003 and 2020, with at least 2 years of follow-up period. Operation procedures were conducted in two stages, beginning with L5-S1 anterior release followed by posterior fixation. Radiologic parameters were measured at preoperative, immediate postoperative, and last follow-up periods with clinical hip pain and clinical hip dislocation events. RESULTS: The significant improvements occurred in various parameters after correction surgery for NM scoliosis, containing Cobb's angle of major curve and CO-PT. However, Reimer's hip migration percentage (RMP) was increased on both side of hip (High side, 0.23 ± 0.16 to 0.28 ± 0.21; Low side, 0.20 ± 0.14 to 0.23 ± 0.18). Hip pain and dislocation events were also increased (Visual analog scale score, 2.5 ± 2.3 to 3.6 ± 2.6, P value < 0.05; dislocation, 6-12). Logistic regression analysis of the interactions between ΔRMP(High) and the change of sagittal pelvic tilt (ΔSA-PT) after correction reveals a significant negative association. (95% CI 1.003-1.045, P value = 0.0226). CONCLUSIONS: In cases of non-ambulatory flaccid NM scoliosis, clinical hip pain, and subluxation continued to deteriorate even after correction of CO-PT. There was a relationship between the decrease in SA-PT, and an increase in hip migration percentage on high side, indicating the aggravation of hip subluxation.

7.
Allergol Immunopathol (Madr) ; 52(1): 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38186188

RESUMO

BACKGROUND: Resveratrol has been found to have anti-inflammatory and anti-allergic properties. The effects of resveratrol on thymic stromal lymphopoietin (TSLP)-mediated atopic march remain unclear. PURPOSE: To explore the potential role of resveratrol in TSLP-mediated atopic march. METHODS: The atopic march mouse model was established by topical application of MC903 (a vitamin D3 analog). Following the treatment with resveratrol, airway resistance in mice was discovered by pulmonary function apparatus, and the number of total cells, neutrophils, and eosinophils in bronchoalveolar lavage fluid was counted. The histopathological features of pulmonary and ear skin tissues, inflammation, and cell infiltration were determined by hematoxylin and eosin staining. The messenger RNA (mRNA) levels of TSLP, immunoglobulin E, interleukin (IL)-4, IL-5, and IL-13 were measured by real-time quantitative polymerase chain reaction. The protein expression of nuclear factor kappa B (NF-κB)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling-associated molecules (p-p65, p65, p-I kappa B kinase alpha (IκBα), IκBα, Nrf2, and TSLP) in lung and ear skin tissues were assessed by Western blot analysis. RESULTS: Resveratrol attenuated airway resistance and infiltration of total cells, eosinophils, and neutrophils in both lung and ear skin tissues. Resveratrol ameliorates serum inflammatory markers in allergic mice. Moreover, the phosphorylation levels of NF-κB pathway-related proteins were significantly reduced by administration of resveratrol in allergic lung and ear skin tissues. Similarly, the protein expression of TSLP in both lung and ear skin tissues was reduced by resveratrol, and Nrf2, a protector molecule, was increased with resveratrol treatment. CONCLUSION: Resveratrol attenuates TSLP-reduced atopic march through ameliorating inflammation and cell infiltration in pulmonary and ear skin tissues by inhibiting the abnormal activation of NF-κB signaling pathway.


Assuntos
Hipersensibilidade Imediata , Linfopoietina do Estroma do Timo , Animais , Camundongos , NF-kappa B , Resveratrol/farmacologia , Fator 2 Relacionado a NF-E2/genética , Inibidor de NF-kappaB alfa , Citocinas , Inflamação
8.
Ren Fail ; 46(2): 2374449, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38973429

RESUMO

OBJECTIVES: Geriatric Nutritional Risk Index (GNRI) is a new and simple index recently introduced to assess nutritional status, and its predictive value for clinical outcomes has been demonstrated in patients with chronic kidney disease. However, the association between the GNRI and prognosis has not been evaluated so far in patients with acute kidney injury (AKI), especially in those receiving continuous renal replacement therapy (CRRT). METHODS: A total of 1096 patients with severe AKI initiating CRRT were identified for inclusion in this retrospective observational study. Patients were divided into three groups according to GNRI tertiles, with tertile 1 as the reference. The outcomes of interest were the 28- and 90-days of all-cause mortality. The associations between GNRI and clinical outcomes were estimated using multivariate Cox proportional hazards model analysis. RESULTS: The overall mortality rates at 28- and 90-days were 61.6% (675/1096) and 71.5% (784/1096), respectively. After adjusting for multiple confounding factors, GNRI was identified as an independent prognostic factor for 28-days all-cause mortality (HR, 0.582; 95% CI, 0.467-0.727; p < .001 for tertile 3 vs. tertile 1) as well as 90-days all-cause mortality (HR, 0.540; 95% CI, 0.440-0.661; p < .001 for tertile 3 vs. tertile 1). The observed inverse associations were robust across subgroup analysis, and were more pronounced in elderly patients over 65 years of age. Finally, incorporating GNRI in a model with established risk factors might significantly improve its predictive power for the short-term death. CONCLUSIONS: GNRI is considered to be a useful prognostic factor in patients with severe AKI initiating CRRT, especially in elderly patients.


Assuntos
Injúria Renal Aguda , Avaliação Geriátrica , Avaliação Nutricional , Estado Nutricional , Humanos , Estudos Retrospectivos , Feminino , Idoso , Masculino , Injúria Renal Aguda/mortalidade , Injúria Renal Aguda/terapia , Idoso de 80 Anos ou mais , Prognóstico , Pessoa de Meia-Idade , Fatores de Risco , Modelos de Riscos Proporcionais , Medição de Risco , Terapia de Substituição Renal Contínua , Índice de Gravidade de Doença
9.
Korean J Physiol Pharmacol ; 28(3): 229-237, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682171

RESUMO

Cough is a common symptom of several respiratory diseases. However, frequent coughing from acute to chronic often causes great pain to patients. It may turn into cough variant asthma, which seriously affects people's quality of life. For cough treatment, it is dominated by over-the-counter antitussive drugs, such as asmeton, but most currently available antitussive drugs have serious side effects. Thus, there is a great need for the development of new drugs with potent cough suppressant. BALB/c mice were used to construct mice model with cough to investigate the pharmacological effects of pectolinarigenin (PEC). Hematoxylin-eosin and Masson staining were used to assess lung injury and airway remodeling, and ELISA was used to assess the level of inflammatory factor release. In addition, inflammatory cell counts were measured to assess airway inflammation. Airway hyperresponsiveness assay was used to assess respiratory resistance in mice. Finally, we used Western blotting to explore the potential mechanisms of PEC. We found that PEC could alleviate lung tissue injury and reduce the release of inflammatory factors, inhibit of cough frequency and airway wall collagen deposition in mice model with cough. Meanwhile, PEC inhibited the Ras/ERK/c-Fos pathway to exhibit antitussive effect. Therefore, PEC may be a potential drug for cough suppression.

10.
Toxicol Appl Pharmacol ; 462: 116411, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740146

RESUMO

OBJECTIVES: Pirarubicin (THP) is widely used in clinical antitumor therapy, but its cardiotoxicity seriously affects the therapeutic effect in patients. In the study, we investigated the role of ring finger protein 10 (RNF10) in cardiotoxicity induced by THP. MATERIALS AND METHODS: A cardiac toxicity model in Sprague-Dawley (SD) rats induced by THP was established. Changes in diet, weight, electrocardiogram (ECG), and echocardiography were observed. Serum levels of brain natriuretic peptide (BNP), creatine kinase MB (CK-MB), cardiac troponin T (cTnT), and lactate dehydrogenase (LDH) were measured. The expression of RNF10 in myocardium was observed by immunohistochemistry. The expressions of RNF10, activator protein-1 (AP-1), mesenchyme homeobox 2 (Meox2), total nuclear factor (NF)-κB p65 (T-P65), phosphorylated NF-κB p65 (PP65), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and mature IL-1ß were detected by Western blot. A THP-induced H9c2 myocardial cell injury model was established. RNF10 was downregulated or overexpressed by RNF10 siRNA and a RNF10 lentiviral vector, respectively. Then, cell viability was measured. The expression of RNF10 in H9c2 cells was observed by immunofluorescence. All of the above signaling pathways were verified by Western blots. FINDINGS: THP caused a series of cardiotoxic manifestations in SD rats. Our studies suggested that THP caused cardiac inflammation by inhibiting the expression of RNF10, while overexpression of RNF10 antagonized the cardiotoxicity induced by THP. SIGNIFICANCE: Our study showed RNF10 improved THP-induced cardiac inflammation by regulating the AP-1/Meox2 signaling pathway. RNF10 may be a new target to treat THP-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Fator de Transcrição AP-1 , Ratos , Animais , Fator de Transcrição AP-1/metabolismo , Cardiotoxicidade/etiologia , Ratos Sprague-Dawley , Transdução de Sinais , NF-kappa B/metabolismo , Arritmias Cardíacas , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Inflamação/patologia , Proteínas de Transporte/metabolismo , Proteínas do Tecido Nervoso/metabolismo
11.
Pediatr Res ; 94(2): 653-659, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36732647

RESUMO

BACKGROUND: The brain and muscle Arnt-like protein-1 (BMAL1) gene is an important circadian clock gene and previous studies have found that certain polymorphisms are associated with type 2 diabetes in adults. However, it remains unknown if such polymorphisms can affect fasting glucose in children and if other factors modify the associations. METHODS: A school-based cross-sectional study with 947 Chinese children was conducted. A multivariable linear regression model was used to analyze the association between BMAL1 gene polymorphisms and fasting glucose level. RESULTS: After adjusting for age, sex, body mass index (BMI), physical activity, and unhealthy diet, GG genotype carriers of BMAL1 rs3789327 had higher fasting glucose than AA/GA genotype carriers (b = 0.101, SE = 0.050, P = 0.045). Adjusting for the same confounders, rs3816358 was shown to be significantly associated with fasting glucose (b = 0.060, SE = 0.028, P = 0.032). Furthermore, a significant interaction between rs3789327 and nutritional status on fasting glucose was identified (Pinteraction = 0.009); rs3789327 was associated with fasting glucose in the overweight/obese subgroup (b = 0.353, SE = 0.126, P = 0.006), but not in non-overweight/non-obese children. CONCLUSIONS: BMAL1 polymorphisms were significantly associated with the fasting glucose level in children. Additionally, the observed interaction between nutritional status and BMAL1 supports promoting an optimal BMI in children genetically predisposed to higher glucose level. IMPACT: Polymorphisms in the essential circadian clock gene BMAL1 were associated with fasting blood glucose levels in children. Additionally, there was a significant interaction between nutritional status and BMAL1 affecting fasting glucose levels. BMAL1 rs3789327 was associated with fasting glucose only in overweight/obese children. This finding could bring novel insights into mechanisms by which nutritional status influences fasting glucose in children.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Criança , Humanos , Fatores de Transcrição ARNTL/genética , Estudos Transversais , Jejum , Glucose , Obesidade/genética , Polimorfismo de Nucleotídeo Único
12.
Eur Biophys J ; 52(1-2): 17-25, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36547692

RESUMO

Human epidermal growth factor receptor (EGFR) is involved in strong association with malignant proliferation, which has been shown to play a central role in the development and progression of non-small cell lung cancer and other solid tumors. The tumor-suppressor protein MIG6 is a negative regulator of EGFR kinase activity by binding at the activation interface of asymmetric dimer of EGFR kinase domain to disrupt EGFR dimerization and then inactivate the kinase. The protein adopts two discrete fragments 1 and 2 to directly interact with EGFR. It is revealed that the MIG6 fragment 2 is intrinsically disordered in free unbound state, but would fold into a well-structured ß-hairpin when binding to EGFR, thus characterized by a so-called coupled folding-upon-binding process, which can be regarded as a compromise between favorable direct readout and unfavorable indirect readout. Here, a 23-mer F2P peptide was derived from MIG6 fragment 2, trimmed into a 17-mer tF2P peptide that contains the binding hotspot region of the fragment 2, and then constrained with an ordered hairpin conformation in free unbound state by disulfide stapling, finally resulting in a rationally stapled/trimmed stF2P peptide that largely minimizes the unfavorable indirect readout effect upon its binding to EGFR kinase domain, with affinity improved considerably upon the trimming and stapling/trimming. These rationally designed ß-hairpin peptides may be further exploited as potent anti-lung cancer agents to target the activation event of EGFR dimerization.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores ErbB/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Peptídeos/química
13.
BMC Anesthesiol ; 23(1): 248, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481510

RESUMO

BACKGROUND: Various approaches using epidural analgesia have been employed for relieving labor pain and promoting spontaneous delivery. We aimed to evaluate the effect of nalbuphine and ropivacaine versus fentanyl and ropivacaine on the duration of delivery in parturients. METHODS: Clinical data of 160 full-term primiparous women who received either nalbuphine or fentanyl in combination with ropivacaine infusion for epidural labor analgesia in our hospital from December 2020 to May 2022 were retrospectively analyzed. The participants were divided into two groups based on anesthesia methods: nalbuphine group (NR group, n = 78) received 0.2 mg/mL nalbuphine combined with 0.1% ropivacaine hydrochloride for patient-controlled epidural analgesia (PCEA) and fentanyl group (FR group, n = 82) received 2 ug/mL fentanyl citrate and 0.1% ropivacaine hydrochloride for PCEA. Both groups received an epidural blockade for labor analgesia at lumbar 2-3 interspace. The duration of the first, second, and third stages of labor, the onset of analgesia, and time before delivery (T0), 15 min of analgesia (T1), 30 min of analgesia (T2), full opening of the uterine opening (T3),exerts force during childbirth(T4), heart rate (HR), blood pressure (BP), blood saturation (SpO2), visual analogue pain scale (VAS) score, Ramsay sedation score, and modified Bromage score, and 5 min were recorded at 2 h postpartum (T5). The neonatal Apgar score, neonatal behavioral neurological assessment (NBNA) score, maternal nausea, vomiting, and itchy skin were recorded. RESULTS: Compared with the FR group, the first stage of labor duration (p < 0.05) and total duration of labor (p < 0.05) were shortened and the onset of analgesia (p < 0.05) was increased in the NR group. NR group had lower incidence of urinary retention than FR group (p < 0.05). The maternal and neonatal investigational parameters and scores had no significant difference between the two groups. CONCLUSIONS: Nalbuphine combined with ropivacaine in epidural block labor has a faster onset of analgesia and has a lower incidence of urinary retention than fentanyl combined with ropivacaine, and nalbuphine shortens the duration of the first and total stages of labor. Both nalbuphine and fentanyl can reduce pain during labor, have little effect on maternal hemodynamics, and have no significant effect on neonatal Apgar or NBNA scores.


Assuntos
Analgesia Epidural , Nalbufina , Retenção Urinária , Gravidez , Recém-Nascido , Feminino , Humanos , Ropivacaina , Estudos Retrospectivos , Dor , Fentanila
14.
Anal Chem ; 94(50): 17360-17364, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36473082

RESUMO

Aerosols generated by bubble bursting have been proved to promote the extraction of analytes and have ultrahigh electric fields at their water-air interfaces. This study presented a simple and efficient ionization method, carbon dioxide microbubble bursting ionization (CDMBI), without the presence of an exogenous electric field (namely, zero voltage), by simulating the interfacial chemistries of sea spray aerosols. In CDMBI, microbubbles are generated in situ by continuous input of carbon dioxide into an aqueous solution containing low-concentration analytes. The microbubbles extract low- and high-polarity analytes as they pass through the aqueous solution. Upon reaching the water-air interface, these microbubbles burst to produce charged aerosol microdroplets with an average diameter of 260 µm (8.1-10.4 nL in volume), which are immediately transferred to a mass spectrometer for the detection and identification of extracted analytes. The above analytical process occurs every 4.2 s with a stable total ion chromatogram (relative standard deviation: 9.4%) recorded. CDMBI mass spectrometry (CDMBI-MS) can detect surface-active organic compounds in aerosol microdroplets, such as perfluorooctanoic acid, free fatty acids epoxidized by bubble bursting, sterols, and lecithins in soybean and egg, with the limit of detection reaching the level of fg/mL. In addition, coupling CDMBI-MS with an exogenous voltage yields relatively weak gains in ionization efficiency and sensitivity of analysis. The results suggested that CDMBI can simultaneously accomplish both bubbling extraction and microbubble bursting ionization. The mechanism of CDMBI involves bubbling extraction, proton transfer, inlet ionization, and electrospray-like ionization. Overall, CDMBI-MS can work in both positive and negative ion modes without necessarily needing an exogenous high electric field for ionization and quickly detect trace surface-active analytes in aqueous solutions.


Assuntos
Dióxido de Carbono , Microbolhas , Espectrometria de Massas , Aerossóis/química , Água/química , Espectrometria de Massas por Ionização por Electrospray/métodos
15.
Anal Chem ; 94(43): 15002-15009, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255385

RESUMO

In mass spectrometry (MS), nonvolatile salts contaminate the transmission system and cause ion suppression, hampering MS analysis. When MS is combined with liquid chromatography (LC) that uses a salty mobile phase, the problems become more intractable due to long analysis time. Here, a novel heat-assisted dual neutral spray ionization (HADSI) method was developed, which projected sample solution spray and solvent spray onto a heated plate to achieve online desalting and high ionization. The experimental parameters of HADSI were optimized, which indicated that the plate temperature was crucial for ionization and desalination. Eight drug compounds dissolved in various commonly used buffers were directly analyzed using HADSI-MS, even though the concentration of PBS buffer reached 500 mmol/L. The established method showed considerable sensitivity in the positive ion mode with the limits of detection at the level of nmol/L, and good linearity (R2 > 0.99) was achieved for all the analyzed compounds. The repeatability and intra- and interday precisions of the method were evaluated, demonstrating the feasibility and reliability of the analysis of salty samples by HADSI-MS. Further, the method was demonstrated to tolerate the long-time analysis of high-salt LC eluates and the device was easy to maintain. Finally, a crude roxithromycin product was separated by LC and then analyzed by HADSI-MS, and seven unknown impurities and nine known impurities were successfully detected. Our results indicated that HADSI-MS may have potential applications in academic and industrial fields.


Assuntos
Temperatura Alta , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Reprodutibilidade dos Testes , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão
16.
Environ Sci Technol ; 56(8): 4795-4805, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35235293

RESUMO

Isoprene is the most abundant precursor of global secondary organic aerosol (SOA). The epoxide pathway plays a critical role in isoprene SOA (iSOA) formation, in which isoprene epoxydiols (IEPOX) and/or hydroxymethyl-methyl-α-lactone (HMML) can react with nucleophilic sulfate and water producing isoprene-derived organosulfates (iOSs) and oxygen-containing tracers (iOTs), respectively. This process is complicated and highly influenced by anthropogenic emissions, especially in the polluted urban atmospheres. In this study, we took a 1-year measurement of the paired iOSs and iOTs formed through the IEPOX and HMML pathways at the three urban sites from northern to southern China. The annual average concentrations of iSOA products at the three sites ranged from 14.6 to 36.5 ng m-3. We found that the nucleophilic-addition reaction of isoprene epoxides with water dominated over that with sulfate in the polluted urban air. A simple set of reaction rate constant could not fully describe iOS and iOT formation everywhere. We also found that the IEPOX pathway was dominant over the HMML pathway over urban regions. Using the kinetic data of IEPOX to estimate the reaction parameters of HMML will cause significant underestimation in the importance of HMML pathway. All these findings provide insights into iSOA formation over polluted areas.


Assuntos
Poluentes Atmosféricos , Compostos de Epóxi , Aerossóis/análise , Butadienos , Hemiterpenos , Pentanos , Sulfatos , Água
17.
J Sep Sci ; 45(16): 3128-3138, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691018

RESUMO

Methazolamide is an important carbonic anhydrase inhibitor and is mainly used for the treatment of glaucoma. Studies are extremely rare regarding the impurities in methazolamide products. In this work, the high-performance liquid chromatography/high-performance liquid chromatography-mass spectrometry methods were established for the analysis of impurities in methazolamide products. Five impurities (A, B, C, D, and E) were detected using the established high-performance liquid chromatography/high-performance liquid chromatography-mass spectrometry methods. Of these impurities, impurities A, B, and D are known compounds, and impurities C and E are novel compounds that have never been reported before. The identities of impurities A, B, D, and E were recognized by comparing their retention times and mass spectra with those of synthesized standard compounds under the same high-performance liquid chromatography-mass spectrometry conditions. Moreover, the structures of impurities C and E were characterized using a variety of analytical techniques including multidimensional nuclear magnetic resonance spectroscopy, Fourier transforming infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and high-resolution quadrupole time-of-flight mass spectrometry. All of the five impurities are structural analogs of methazolamide. The formation mechanisms of these impurities were discussed.


Assuntos
Contaminação de Medicamentos , Metazolamida , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
18.
J Proteome Res ; 20(8): 3952-3962, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229439

RESUMO

Screening of characteristic biomarkers from chiral amino-containing metabolites in biological samples is difficult and important for the noninvasive diagnosis of gastric cancer (GC). Here, an enantiomeric pair of chlorine-labeled probes d-BPCl and l-BPCl was synthesized to selectively label d- and l-amino-containing metabolites in biological samples, respectively. Incorrect structural annotations were excluded according to the characteristic 3:1 abundance ratio of natural chlorine isotopes (35Cl and 37Cl) derived from the probes. A sensitive C18 HPLC-QQQ-MS/MS method in combination with the probes was then developed and applied in metabolomic analysis of amino-containing metabolites in urine samples. A total of 161 amino-containing metabolites were rapidly separated and determined, and 28 chiral amino acids and achiral glycine were quantified with good precision and accuracy. A total of 18 differential variables were discriminated by analyzing chiral amino-containing metabolites in urine samples of the GC patient and healthy person using the probe-based HPLC-MS/MS-MRM method combined with the orthogonal partial least squares discriminant analysis and Mann-Whitney U test with false discovery rate correction for multiple hypotheses. A diagnostic regression model including d-isoleucine, d-serine, and ß-(pyrazol-1-yl)-l-alanine and age was then constructed with an average prediction correctness of 88.9% in the validation set. This work established a close connection between gastric cancer and chiral amino-containing metabolites. The mass spectrometry data analyzed in the study are publicly available via Mendeley Data (DOI: 10.17632/4bd93j9yrr.1).


Assuntos
Cloro , Neoplasias Gástricas , Biomarcadores , Cromatografia Líquida de Alta Pressão , Humanos , Metabolômica , Neoplasias Gástricas/diagnóstico , Espectrometria de Massas em Tandem
19.
Kidney Int ; 99(6): 1342-1353, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631226

RESUMO

Blood phosphate levels are linked to atherosclerotic cardiovascular disease in patients with chronic kidney disease (CKD), but the molecular mechanisms remain unclear. Emerging studies indicate an involvement of hyperphosphatemia in CKD accelerated atherogenesis through disturbed cholesterol homeostasis. Here, we investigated a potential atherogenic role of high phosphate concentrations acting through aberrant activation of sterol regulatory element-binding protein (SREBP) and cleavage-activating protein (SCAP)-SREBP2 signaling in patients with CKD, hyperphosphatemic apolipoprotein E (ApoE) knockout mice, and cultured vascular smooth muscle cells. Hyperphosphatemia correlated positively with increased atherosclerotic cardiovascular disease risk in Chinese patients with CKD and severe atheromatous lesions in the aortas of ApoE knockout mice. Mice arteries had elevated SCAP levels with aberrantly activated SCAP-SREBP2 signaling. Excess phosphate in vitro raised the activity of α-mannosidase, resulting in delayed SCAP degradation through promoting complex-type conversion of SCAP N-glycans. The retention of SCAP enhanced transactivation of SREBP2 and expression of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, boosting intracellular cholesterol synthesis. Elevated α-mannosidase II activity was also observed in the aortas of ApoE knockout mice and the radial arteries of patients with uremia and hyperphosphatemia. High phosphate concentration in vitro elevated α-mannosidase II activity in the Golgi, enhanced complex-type conversion of SCAP N-glycans, thereby upregulating intracellular cholesterol synthesis. Thus, our studies explain how hyperphosphatemia independently accelerates atherosclerosis in CKD.


Assuntos
Aterosclerose , Hiperfosfatemia , Insuficiência Renal Crônica , Animais , Aterosclerose/etiologia , Colesterol , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Manosidases , Proteínas de Membrana , Camundongos , Camundongos Knockout para ApoE , Polissacarídeos , Insuficiência Renal Crônica/complicações , Proteína de Ligação a Elemento Regulador de Esterol 2
20.
Basic Res Cardiol ; 116(1): 47, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319513

RESUMO

Altered autophagy is implicated in several human cardiovascular diseases. Remote ischemic conditioning (RIC) is cardioprotective in multiple cardiovascular injury models and modifies autophagy signaling, but its effect in cardiomyopathy induced by gene manipulation has not been reported. To investigate the cardiac effects of chronically reduced autophagy as a result of Atg5 knockdown and assess whether RIC can rescue the phenotype. Atg5 knockdown was induced with tamoxifen for 14 days in cardiac-specific conditional Atg5 flox mice. Autophagy proteins and cardiac function were evaluated by Western blot and echocardiography, respectively. RIC was induced by cyclical hindlimb ischemia and reperfusion using a tourniquet. RIC or sham procedure was performed daily during tamoxifen induction and, in separate experiments, chronically 3 times per week for 8 weeks. Cardiac responses were assessed by end of the study. Cardiac-specific knockdown of Atg5 reduced protein levels by 70% and was associated with a significant increase in mTOR, a reduction of LC3-II and increased upstream autophagy proteins including LC3-I, P62, and Beclin. The changes in biochemical markers were associated with development of an age-related cardiomyopathy during the 17-month follow-up indicated by increased heart weight body weight ratio, progressive decline in cardiac function, and premature death. RIC increased cardiac ATG5 and rescued some of the Atg5 knockdown-induced cardiomyopathy phenotype and associated morphological remodeling. We conclude that cardiac-specific Atg5 knockdown leads to the development of age-related cardiomyopathy. RIC reverses the molecular and structural phenotype when administered both acutely and chronically.


Assuntos
Cardiomiopatias , Animais , Autofagia , Proteína 5 Relacionada à Autofagia/genética , Cardiomiopatias/genética , Coração , Isquemia , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA