Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 113(4): 2085-2095, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895283

RESUMO

The present study used soils contaminated with Fusarium oxysporum f. sp. capsici (CCS) and CCS amended with bamboo biochar (CCS + BC) to grow the pepper variety Qujiao No.1. The physiological performance, and transcriptome and metabolome profiling in leaf (L) and fruit (F) of Qujiao No.1 were conducted. Application of biochar improved soil properties, pepper plant nutrition and increased activities of enzymes related to pest/disease resistance, leading to superior physiological performance and lesser F. wilt disease incidence than plants from CCS. Most of the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were involved in protein processing in endoplasmic reticulum (fruit), plant pathogen interaction (fruit), photosynthesis (leaf), phenylpropanoid biosynthesis (both tissues) and metabolic pathways (both tissues). Biochar improved plant photosynthesis, enhanced the immune system, energy production and increased stress signaling pathways. Overall, our results provide evidence of a number of pathways induced by biochar in pepper regulating its response to F. wilt disease.


Assuntos
Fusarium , Sasa , Carvão Vegetal , Fusarium/genética , Metaboloma , Doenças das Plantas/genética , Sasa/genética , Transcriptoma
2.
Genomics ; 113(4): 2108-2121, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964421

RESUMO

Tomato is more prone to Tuta absoluta invasion and damages as compared to other host plants but the mechanism behind this preference has not been elucidated. Here, two contrasting host preference plants, tomato and eggplant, were used to investigate biochemical and transcriptomic modifications induced by T. absoluta infestation. Biochemical analysis at 0-72 h post T. absoluta infestation revealed significantly reduced concentrations of amino acid, fructose, sucrose, jasmonic acid, salicylic acid, and total phenols in tomato compared to eggplant, mainly at 48 h post T. absoluta infestation. Transcriptome analysis showed higher transcript changes in infested eggplant than tomato. Signaling genes had significant contributions to mediate plant immunity against T. absoluta, specifically genes associated with salicylic acid in eggplant. Genes from PR1b1, NPR1, NPR3, MAPKs, and ANP1 families play important roles to mitigate T. absoluta infestation. Our results will facilitate the development of control strategies against T. absoluta for sustainable tomato production.


Assuntos
Mariposas , Solanum lycopersicum , Solanum melongena , Animais , Perfilação da Expressão Gênica , Humanos , Solanum lycopersicum/genética , Mariposas/fisiologia , Solanum melongena/genética , Transcriptoma
3.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842411

RESUMO

Molecular changes elicited by common bean (Phaseolus vulgaris L.) in response to Fusarium oxysproum f. sp. Phaseoli (FOP) remain elusive. We studied the changes in root metabolism during common bean-FOP interactions using a combined de novo transcriptome and metabolome approach. Our results demonstrated alterations of transcript levels and metabolite concentrations in common bean roots 24 h post infection as compared to control. The transcriptome and metabolome responses in common bean roots revealed significant changes in structural defense i.e., cell-wall loosening and weakening characterized by hyper accumulation of cell-wall loosening and degradation related transcripts. The levels of pathogenesis related genes were significantly higher upon FOP inoculation. Interestingly, we found the involvement of glycosylphosphatidylinositol- anchored proteins (GPI-APs) in signal transduction in response to FOP infection. Our results confirmed that hormones have strong role in signaling pathways i.e., salicylic acid, jasmonate, and ethylene pathways. FOP induced energy metabolism and nitrogen mobilization in infected common bean roots as compared to control. Importantly, the flavonoid biosynthesis pathway was the most significantly enriched pathway in response to FOP infection as revealed by the combined transcriptome and metabolome analysis. Overall, the observed modulations in the transcriptome and metabolome flux as outcome of several orchestrated molecular events are determinant of host's role in common bean-FOP interactions.


Assuntos
Fusariose/genética , Fusariose/metabolismo , Fusarium/fisiologia , Metaboloma , Phaseolus/microbiologia , Phaseolus/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma , Biologia Computacional/métodos , Fusariose/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Metabolômica/métodos , Fenótipo
4.
Front Genet ; 15: 1365243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660681

RESUMO

Shading treatments impact the tea (Camellia sinensis L.) quality. The sunlight sensitive varieties can be grown under shading nets for better growth and secondary metabolite content. Here, we studied the responses of a sunlight sensitive green tea variety "Huangjinya" by growing under colored shading nets (red, yellow, blue, and black (75% and 95%) shading rates) to find out the most suitable color of the shading net. Red shading was the most promising treatment as it positively affected the weight and length of 100 one-bud-three leaves and reduced the degree and rate of new shoots burn compared to control (natural sunlight). We then explored the comparative metabolomic changes in response to red shading by using UPLC-ESI-MS/MS system. The amino acids and derivatives, flavonoids, and alkaloids were downaccumulated whereas lipids, organic acids, and lignans were upaccumulated in Red shade grown tea samples. The red shading nets caused a decreased catechin, epicatechin, dopamine, and L-tyramine contents but increased caffeine content. We then employed transcriptome sequencing to find key changes in expressions of related genes and pathways. Notably, key genes associated with the phenylpropanoid and flavonoid biosynthesis pathways exhibited complex regulation. These expression changes suggested a potential trend of polymerization or condensation of simple molecules like catechin or pelargonidin into larger molecules like glucoside or proanthocyanidins. Here, Red shading net triggered higher expression of genes enriched in lipid biosynthesis and jasmonic acid biosynthesis, suggesting an interplay of fatty acids and JA in improving tea performance. These findings contribute to the metabolic responses of Huangjinya tea to red shading nets which might have implications for flavor and health benefits. Our data provide a foundation for further exploration and optimization of cultivation practices for this unique tea variety.

5.
AoB Plants ; 16(4): plae029, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988684

RESUMO

Salicylic acid (SA) is an essential phytoregulator that is widely used to promote the synthesis of high-value nutraceuticals in plants. However, its application in daylily, an ornamental plant highly valued in traditional Chinese medicine, has not been reported. Herein, we investigated the exogenous SA-induced physiological, transcriptional and biochemical changes in long yellow daylily (LYD). We found that 2 mg/L foliar SA treatment significantly improved LYD plant growth and yield. Transcriptome sequencing and differentially expressed genes (DEGs) analysis revealed that the phenylpropanoid biosynthesis, isoquinoline alkaloid biosynthesis, sulfur metabolism, plant hormone signal transduction and tyrosine metabolism were significantly induced in SA-treated leaves. Many transcription factors and antioxidant system-related DEGs were induced under the SA treatment. Biochemical analyses showed that the leaf contents of soluble sugar, soluble protein (Cpr), ascorbic acid (AsA) and colchicine were significantly increased by 15.15% (from 30.16 ±â€…1.301 to 34.73 ±â€…0.861 mg/g), 19.54% (from 60.3 ±â€…2.227 to 72.08 ±â€…1.617 mg/g), 30.45% (from 190.1 ±â€…4.56 to 247.98 ±â€…11.652 µg/g) and 73.05% (from 3.08 ±â€…0.157 to 5.33 ±â€…0.462 µg/g), respectively, under the SA treatment. Furthermore, we identified 15 potential candidate genes for enhancing the growth, production and phytochemical content of LYD. Our results provide support for the bioaccumulation of colchicine in yellow daylily and valuable resources for biotechnological-assisted production of this important nutraceutical in Hemerocallis spp.

6.
Front Genet ; 14: 1163464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359383

RESUMO

Sheath rot disease (SRD) is one of the most devastating diseases of Manchurian wild rice (MWR) (Zizania latifolia Griseb). Pilot experiments in our laboratory have shown that an MWR cultivar "Zhejiao NO.7"exhibits signs of SRD tolerance. To explore the responses of Zhejiao No. 7 to SRD infection, we used a combined transcriptome and metabolome analysis approach. A total of 136 differentially accumulated metabolites (DAMs, 114 up- and 22 down-accumulated in FA compared to CK) were detected. These up-accumulated metabolites were enriched in tryptophan metabolism, amino acid biosynthesis, flavonoids, and phytohormone signaling. Transcriptome sequencing results showed the differential expression of 11,280 genes (DEGs, 5,933 up-, and 5,347 downregulated in FA compared to CK). The genes expressed in tryptophan metabolism, amino acid biosynthesis, phytohormone biosynthesis and signaling, and reactive oxygen species homeostasis confirmed the metabolite results. In addition, genes related to the cell wall, carbohydrate metabolism, and plant-pathogen interaction (especially hypersensitive response) showed changes in expression in response to SRD infection. These results provide a basis for understanding the response mechanisms in MWR to FA attack that can be used for breeding SRD-tolerant MWR.

7.
Front Plant Sci ; 12: 757230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804095

RESUMO

The South American tomato pinworm, Tuta absoluta, is one of the most destructive insect pests in Solanaceae crops, particularly in tomatoes. Current methods of management have proven somewhat effective but still require a more efficacious management strategy to limit its havoc on crop yield. Tomato is much more predisposed to T. absoluta as compared with other plants such as eggplants, but the underlying causes have not been fully determined. We conducted this study to unravel the volatile organic compounds (VOCs) and primary/secondary metabolites that account for the differential response of tomatoes and eggplants to T. absoluta infestation. We performed widely targeted comparative metabolome and volatilome profiling by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS), respectively, on eggplants and tomatoes under control and T. absoluta infestation conditions. Overall, 141 VOCs and 797 primary/secondary metabolites were identified, largely dominated by aldehyde, alcohols, alkanes, amine, aromatics, a heterocyclic compound, ketone, olefin, phenol, and terpenes. Most of the VOCs and primary/secondary metabolites from the terpene class were largely differentially regulated in eggplants compared with tomatoes. Eggplants emitted several compounds that were lower or completely absent in tomatoes either under control conditions or after T. absoluta infestation. The results from an electroantennogram showed that 35 differentially accumulated VOCs could elicit female T. absoluta response, implying that these volatile compounds significantly alter the behavior of this pest. These findings demonstrated that differentially accumulated metabolites and volatile compounds play major roles in eggplant resistance to T. absoluta infestation as these compounds were regulated upon attack by T. absoluta. Our findings can assist in integrated pest management efforts by developing appropriate control measures against T. absoluta in Solanaceae production.

8.
Chem Commun (Camb) ; 56(18): 2735-2738, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32021997

RESUMO

A new route for the synthesis of sulfonated 4H-3,1-benzoxazines has been accomplished by electrochemical radical cascade cyclizations of styrenyl amides with sulfonylhydrazines. This process demonstrates a wide substrate scope with diverse functional group compatibility under metal- and external oxidant-free conditions at ambient temperature.

9.
Genes (Basel) ; 11(2)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046085

RESUMO

Common bean (Phaseolus vulgaris L.) is a major legume and is frequently attacked by fungal pathogens, including Fusarium solani f. sp. phaseoli (FSP), which cause Fusarium root rot. FSP substantially reduces common bean yields across the world, including China, but little is known about how common bean plants defend themselves against this fungal pathogen. In the current study, we combined next-generation RNA sequencing and metabolomics techniques to investigate the changes in gene expression and metabolomic processes in common bean infected with FSP. There were 29,722 differentially regulated genes and 300 differentially regulated metabolites between control and infected plants. The combined omics approach revealed that FSP is perceived by PAMP-triggered immunity and effector-triggered immunity. Infected seedlings showed that common bean responded by cell wall modification, ROS generation, and a synergistic hormone-driven defense response. Further analysis showed that FSP induced energy metabolism, nitrogen mobilization, accumulation of sugars, and arginine and proline metabolism. Importantly, metabolic pathways were most significantly enriched, which resulted in increased levels of metabolites that were involved in the plant defense response. A correspondence between the transcript pattern and metabolite profile was observed in the discussed pathways. The combined omics approach enhances our understanding of the less explored pathosystem and will provide clues for the development of common bean cultivars' resistant to FSP.


Assuntos
Fusarium/patogenicidade , Interações entre Hospedeiro e Microrganismos/genética , Phaseolus/microbiologia , Doenças das Plantas/imunologia , Plântula/microbiologia , Transcriptoma/genética , Arginina/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Parede Celular/microbiologia , Cromatografia Líquida de Alta Pressão , Metabolismo Energético , Regulação da Expressão Gênica de Plantas/genética , Ontologia Genética , Espectrometria de Massas , Metabolômica , Nitrogênio/metabolismo , Phaseolus/genética , Phaseolus/imunologia , Phaseolus/metabolismo , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Prolina/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/imunologia , Plântula/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Açúcares/metabolismo
10.
Nat Commun ; 10(1): 833, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783088

RESUMO

Incorporation of nitrile groups into fine chemicals is of particular interest through C(sp3)-H bonds activation of alkyl nitriles in the synthetic chemistry due to the highly efficient atom economy. However, the direct α-functionalization of alkyl nitriles is usually limited to its enolate chemistry. Here we report an electro-oxidative C(sp3)-H bond functionalization of acetonitrile with aromatic/aliphatic mercaptans for the synthesis of sulfur-containing ß-enaminonitrile derivatives. These tetrasubstituted olefin products are stereoselectively synthesized and the stereoselectivity is enhanced in the presence of a phosphine oxide catalyst. With iodide as a redox catalyst, activation of C(sp3)-H bond to produce cyanomethyl radicals proceeds smoothly at a decreased anodic potential, and thus highly chemoselective formation of C-S bonds and enamines is achieved. Importantly, the process is carried out at ambient temperature and can be easily scaled up.

11.
Org Lett ; 21(7): 1958-1962, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30869908

RESUMO

Thiocyanate compounds are key intermediates in the synthesis of pharmaceuticals and other sulfur-containing organic compounds. Herein, we first report an electrochemical protocol to synthesize vinyl thiocyanates from decarboxylative coupling of cinnamic acids with NH4SCN in aqueous solution. This method provides thiocyanation products with broad functional group tolerance under ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA