Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Nucleic Acids Res ; 50(4): e22, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34850128

RESUMO

MicroRNAs (miRNAs or miRs) are single-stranded, ∼22-nucleotide noncoding RNAs that regulate many cellular processes. While numerous miRNA quantification technologies are available, a recent analysis of 12 commercial platforms revealed high variations in reproducibility, sensitivity, accuracy, specificity and concordance within and/or between platforms. Here, we developed a universal hairpin primer (UHP) system that negates the use of miRNA-specific hairpin primers (MsHPs) for quantitative reverse transcription PCR (RT-qPCR)-based miRNA quantification. Specifically, we analyzed four UHPs that share the same hairpin structure but are anchored with two, three, four and six degenerate nucleotides at 3'-ends (namely UHP2, UHP3, UHP4 and UHP6), and found that the four UHPs yielded robust RT products and quantified miRNAs with high efficiency. UHP-based RT-qPCR miRNA quantification was not affected by long transcripts. By analyzing 14 miRNAs, we demonstrated that UHP4 closely mimicked MsHPs in miRNA quantification. Fine-tuning experiments identified an optimized UHP (OUHP) mix with a molar composition of UHP2:UHP4:UHP6 = 8:1:1, which closely recapitulated MsHPs in miRNA quantification. Using synthetic LET7 isomiRs, we demonstrated that the OUHP-based qPCR system exhibited high specificity and sensitivity. Collectively, our results demonstrate that the OUHP system can serve as a reliable and cost-effective surrogate of MsHPs for RT-qPCR-based miRNA quantification for basic research and precision medicine.


Assuntos
MicroRNAs , Análise Custo-Benefício , Primers do DNA/genética , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
J Biol Chem ; 298(10): 102479, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096200

RESUMO

The WNT-ß-catenin signaling pathway has a major role in regulating cell proliferation and differentiation. Aberrant activation of the pathway contributes to various human cancer types. Because casein kinase CK1α-initiated phosphorylation of ß-catenin is a key first step to restrain WNT signaling, effective restoration of CK1α activity represents an innovative strategy to combat WNT-driven cancer. A recent study in JBC reveals the anthelmintic pyrvinium directly binds to CK1α as an activator and also stabilizes CK1α protein, doubling against WNT-driven cancer activity.


Assuntos
Neoplasias , Compostos de Pirvínio , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Compostos de Pirvínio/farmacologia , Via de Sinalização Wnt , Neoplasias/tratamento farmacológico , Neoplasias/genética
3.
Proc Natl Acad Sci U S A ; 116(44): 22347-22352, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611410

RESUMO

Observing the structure and regeneration of the myelin sheath in peripheral nerves following injury and during repair would help in understanding the pathogenesis and treatment of neurological diseases caused by an abnormal myelin sheath. In the present study, transmission electron microscopy, immunofluorescence staining, and transcriptome analyses were used to investigate the structure and regeneration of the myelin sheath after end-to-end anastomosis, autologous nerve transplantation, and nerve tube transplantation in a rat model of sciatic nerve injury, with normal optic nerve, oculomotor nerve, sciatic nerve, and Schwann cells used as controls. The results suggested that the double-bilayer was the structural unit that constituted the myelin sheath. The major feature during regeneration was the compaction of the myelin sheath, wherein the distance between the 2 layers of cell membrane in the double-bilayer became shorter and the adjacent double-bilayers tightly closed together and formed the major dense line. The expression level of myelin basic protein was positively correlated with the formation of the major dense line, and the compacted myelin sheath could not be formed without the anchoring of the lipophilin particles to the myelin sheath.


Assuntos
Bainha de Mielina/ultraestrutura , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Bainha de Mielina/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Ratos
4.
J Cell Mol Med ; 25(5): 2666-2678, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605035

RESUMO

Teeth arise from the tooth germ through sequential and reciprocal interactions between immature epithelium and mesenchyme during development. However, the detailed mechanism underlying tooth development from tooth germ mesenchymal cells (TGMCs) remains to be fully understood. Here, we investigate the role of Wnt/ß-catenin signalling in BMP9-induced osteogenic/odontogenic differentiation of TGMCs. We first established the reversibly immortalized TGMCs (iTGMCs) derived from young mouse mandibular molar tooth germs using a retroviral vector expressing SV40 T antigen flanked with the FRT sites. We demonstrated that BMP9 effectively induced expression of osteogenic markers alkaline phosphatase, collagen A1 and osteocalcin in iTGMCs, as well as in vitro matrix mineralization, which could be remarkably blunted by knocking down ß-catenin expression. In vivo implantation assay revealed that while BMP9-stimulated iTGMCs induced robust formation of ectopic bone, knocking down ß-catenin expression in iTGMCs remarkably diminished BMP9-initiated osteogenic/odontogenic differentiation potential of these cells. Taken together, these discoveries strongly demonstrate that reversibly immortalized iTGMCs retained osteogenic/odontogenic ability upon BMP9 stimulation, but this process required the participation of canonical Wnt signalling both in vitro and in vivo. Therefore, BMP9 has a potential to be applied as an efficacious bio-factor in osteo/odontogenic regeneration and tooth engineering. Furthermore, the iTGMCs may serve as an important resource for translational studies in tooth tissue engineering.


Assuntos
Fator 2 de Diferenciação de Crescimento/genética , Células-Tronco Mesenquimais/metabolismo , Odontogênese/genética , Osteogênese/genética , Germe de Dente/citologia , Via de Sinalização Wnt , Animais , Diferenciação Celular , Linhagem Celular , Transformação Celular Neoplásica , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Fator 2 de Diferenciação de Crescimento/metabolismo , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos
5.
J Cell Mol Med ; 24(2): 1399-1412, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31809000

RESUMO

Liver plays an essential role in regulating lipid metabolism, and chronically disturbed hepatic metabolism may cause obesity and metabolic syndrome, which may lead to non-alcoholic fatty liver disease (NAFLD). Increasing evidence indicates long non-coding RNAs (lncRNAs) play an important role in energy metabolism. Here, we investigated the role of lncRNA H19 in hepatic lipid metabolism and its potential association with NAFLD. We found that H19 was up-regulated in oleic acid-induced steatosis and during the development of high-fat diet (HFD)-induced NAFLD. Exogenous overexpression of H19 in hepatocytes induced lipid accumulation and up-regulated the expression of numerous genes involved in lipid synthesis, storage and breakdown, while silencing endogenous H19 led to a decreased lipid accumulation in hepatocytes. Mechanistically, H19 was shown to promote hepatic steatosis by up-regulating lipogenic transcription factor MLXIPL. Silencing Mlxipl diminished H19-induced lipid accumulation in hepatocytes. Furthermore, H19-induced lipid accumulation was effectively inhibited by PI3K/mTOR inhibitor PF-04691502. Accordingly, H19 overexpression in hepatocytes up-regulated most components of the mTORC1 signalling axis, which were inhibited by silencing endogenous H19. In vivo hepatocyte implantation studies further confirm that H19 promoted hepatic steatosis by up-regulating both mTORC1 signalling axis and MLXIPL transcriptional network. Collectively, these findings strongly suggest that H19 may play an important role in regulating hepatic lipid metabolism and may serve as a potential therapeutic target for NAFLD.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Modelos Animais de Doenças , Inativação Gênica , Células HEK293 , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos Endogâmicos C57BL , Ácido Oleico , RNA Longo não Codificante/genética , Triglicerídeos/metabolismo , Regulação para Cima/genética
7.
FASEB J ; 33(2): 2132-2143, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30252535

RESUMO

Epithelial barrier maintenance and regulation requires an intact perijunctional actomyosin ring underneath the cell-cell junctions. By searching for known factors affecting the actin cytoskeleton, we identified Krev interaction trapped protein 1 (KRIT1) as a major regulator for epithelial barrier function through multiple mechanisms. KRIT1 is expressed in both small intestinal and colonic epithelium, and KRIT1 knockdown in differentiated Caco-2 intestinal epithelium decreases epithelial barrier function and increases cation selectivity. KRIT1 knockdown abolished Rho-associated protein kinase-induced and myosin II motor inhibitor-induced barrier loss by limiting both small and large molecule permeability but did not affect myosin light chain kinase-induced increases in epithelial barrier function. These data suggest that KRIT1 participates in Rho-associated protein kinase- and myosin II motor-dependent (but not myosin light chain kinase-dependent) epithelial barrier regulation. KRIT1 knockdown exacerbated low-dose TNF-induced barrier loss, along with increased cleaved caspase-3 production. Both events are blocked by pan-caspase inhibition, indicating that KRIT1 regulates TNF-induced barrier loss through limiting epithelial apoptosis. These data indicate that KRIT1 controls epithelial barrier maintenance and regulation through multiple pathways, suggesting that KRIT1 mutation in cerebral cavernous malformation disease may alter epithelial function and affect human health.-Wang, Y., Li, Y., Zou, J., Polster, S. P., Lightle, R., Moore, T., Dimaano, M., He, T.-C., Weber, C. R., Awad, I. A., Shen, L. The cerebral cavernous malformation disease causing gene KRIT1 participates in intestinal epithelial barrier maintenance and regulation.


Assuntos
Apoptose , Permeabilidade da Membrana Celular , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Mucosa Intestinal/patologia , Proteína KRIT1/metabolismo , Miosina Tipo II/metabolismo , Quinases Associadas a rho/metabolismo , Citoesqueleto de Actina/metabolismo , Células CACO-2 , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Proteína KRIT1/genética , Miosina Tipo II/genética , Fosforilação , Transdução de Sinais , Quinases Associadas a rho/genética
8.
Lab Invest ; 99(1): 58-71, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30353129

RESUMO

Mesenchymal stem cells (MSCs) are multipotent progenitors that can differentiate into multiple lineages including osteoblastic lineage. Osteogenic differentiation of MSCs is a cascade that recapitulates most, if not all, of the molecular events occurring during embryonic skeletal development, which is regulated by numerous signaling pathways including bone morphogenetic proteins (BMPs). Through a comprehensive analysis of the osteogenic activity, we previously demonstrated that BMP9 is the most potent BMP for inducing bone formation from MSCs both in vitro and in vivo. However, as one of the least studied BMPs, the essential mediators of BMP9-induced osteogenic signaling remain elusive. Here we show that BMP9-induced osteogenic signaling in MSCs requires intact Notch signaling. While the expression of Notch receptors and ligands are readily detectable in MSCs, Notch inhibitor and dominant-negative Notch1 effectively inhibit BMP9-induced osteogenic differentiation in vitro and ectopic bone formation in vivo. Genetic disruption of Notch pathway severely impairs BMP9-induced osteogenic differentiation and ectopic bone formation from MSCs. Furthermore, while BMP9-induced expression of early-responsive genes is not affected by defective Notch signaling, BMP9 upregulates the expression of Notch receptors and ligands at the intermediate stage of osteogenic differentiation. Taken together, these results demonstrate that Notch signaling may play an essential role in coordinating BMP9-induced osteogenic differentiation of MSCs.


Assuntos
Fatores de Diferenciação de Crescimento/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese , Receptores Notch/metabolismo , Diferenciação Celular , Fator 2 de Diferenciação de Crescimento , Células HEK293 , Humanos , Transdução de Sinais , Regulação para Cima
9.
J Craniofac Surg ; 30(6): 1915-1919, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30896511

RESUMO

Due to availability and ease of harvest, adipose tissue is a favorable source of progenitor cells in regenerative medicine, but has yet to be optimized for osteogenic differentiation. The purpose of this study was to test cranial bone healing in a surgical defect model utilizing bone morphogenetic protein-9 (BMP-9) transduced immortalized murine adipocyte (iMAD) progenitor cells in a citrate-based, phase-changing, poly(polyethylene glycol citrate-co-N-isopropylacrylamide) (PPCN)-gelatin scaffold. Mesenchymal progenitor iMAD cells were transduced with adenovirus expressing either BMP-9 or green fluorescent protein control. Twelve mice underwent craniectomy to achieve a critical-sized cranial defect. The iMAD cells were mixed with the PPCN-gelatin scaffold and injected into the defects. MicroCT imaging was performed in 2-week intervals for 12 weeks to track defect healing. Histologic analysis was performed on skull sections harvested after the final imaging at 12 weeks to assess quality and maturity of newly formed bone. Both the BMP-9 group and control group had similar initial defect sizes (P = 0.21). At each time point, the BMP-9 group demonstrated smaller defect size, higher percentage defect healed, and larger percentage defect change over time. At the end of the 12-week period, the BMP-9 group demonstrated mean defect closure of 27.39%, while the control group showed only a 9.89% defect closure (P < 0.05). The BMP-9-transduced iMADs combined with a PPCN-gelatin scaffold promote in vivo osteogenesis and exhibited significantly greater osteogenesis compared to control. Adipose-derived iMADs are a promising source of mesenchymal stem cells for further studies in regenerative medicine, specifically bone engineering with the aim of potential craniofacial applications.


Assuntos
Adipócitos/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Mesenquimais/enzimologia , Nanocompostos , Crânio/enzimologia , Animais , Linhagem Celular , Humanos , Metaloproteinase 9 da Matriz/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Osteogênese , Células-Tronco/citologia , Microtomografia por Raio-X
10.
J Cell Biochem ; 119(11): 8872-8886, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30076626

RESUMO

Human mesenchymal stem cells (MSCs) are a heterogeneous subset of nonhematopoietic multipotent stromal stem cells and can differentiate into mesodermal lineage, such as adipocytes, osteocytes, and chondrocytes, as well as ectodermal and endodermal lineages. Human umbilical cord (UC) is one of the most promising sources of MSCs. However, the molecular and cellular characteristics of UC-derived MSCs (UC-MSCs) require extensive investigations, which are hampered by the limited lifespan and the diminished potency over passages. Here, we used the piggyBac transposon-based simian virus 40 T antigen (SV40T) immortalization system and effectively immortalized UC-MSCs, yielding the iUC-MSCs. A vast majority of the immortalized lines are positive for MSC markers but not for hematopoietic markers. The immortalization phenotype of the iUC-MSCs can be effectively reversed by flippase recombinase-induced the removal of SV40T antigen. While possessing long-term proliferation capability, the iUC-MSCs are not tumorigenic in vivo. Upon bone morphogenetic protein 9 (BMP9) stimulation, the iUC-MSC cells effectively differentiate into osteogenic, chondrogenic, and adipogenic lineages both in vitro and in vivo, which is indistinguishable from that of primary UC-MSCs, indicating that the immortalized UC-MSCs possess the characteristics similar to that of their primary counterparts and retain trilineage differentiation potential upon BMP9 stimulation. Therefore, the engineered iUC-MSCs should be a valuable alternative cell source for studying UC-MSC biology and their potential utilities in immunotherapies and regenerative medicine.


Assuntos
Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Fator 2 de Diferenciação de Crescimento/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Cordão Umbilical/citologia , Análise de Variância , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Técnicas de Cultura de Células/métodos , Proliferação de Células , Condrogênese/fisiologia , Feminino , Vetores Genéticos , Células HEK293 , Humanos , Recém-Nascido , Camundongos Nus , Transposon Resolvases/metabolismo
11.
Cell Physiol Biochem ; 47(3): 957-971, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29843133

RESUMO

BACKGROUND/AIMS: As the most lethal urological cancers, renal cell carcinoma (RCC) comprises a heterogeneous group of cancer with diverse genetic and molecular alterations. There is an unmet clinical need to develop efficacious therapeutics for advanced, metastatic and/or relapsed RCC. Here, we investigate whether anthelmintic drug Niclosamide exhibits anticancer activity and synergizes with targeted therapy Sorafenib in suppressing RCC cell proliferation. METHODS: Cell proliferation and migration were assessed by Crystal violet staining, WST-1 assay, cell wounding and cell cycle analysis. Gene expression was assessed by qPCR. In vivo anticancer activity was assessed in xenograft tumor model. RESULTS: We find that Niclosamide effectively inhibits cell proliferation, cell migration and cell cycle progression, and induces apoptosis in human renal cancer cells. Mechanistically, Niclosamide inhibits the expression of C-MYC and E2F1 while inducing the expression of PTEN in RCC cells. Niclosamide is further shown to synergize with Sorafenib in suppressing RCC cell proliferation and survival. In the xenograft tumor model, Niclosamide is shown to effectively inhibit tumor growth and suppress RCC cell proliferation. CONCLUSIONS: Niclosamide may be repurposed as a potent anticancer agent, which can potentiate the anticancer activity of the other agents targeting different signaling pathways in the treatment of human RCC.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Niacinamida/análogos & derivados , Niclosamida/farmacologia , Compostos de Fenilureia/farmacologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Ciclo Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteínas de Neoplasias/biossíntese , Niacinamida/agonistas , Niacinamida/farmacologia , Niclosamida/agonistas , PTEN Fosfo-Hidrolase/biossíntese , Compostos de Fenilureia/agonistas , Sorafenibe
12.
J Cell Mol Med ; 21(11): 2782-2795, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28470873

RESUMO

The cranial suture complex is a heterogeneous tissue consisting of osteogenic progenitor cells and mesenchymal stem cells (MSCs) from bone marrow and suture mesenchyme. The fusion of cranial sutures is a highly coordinated and tightly regulated process during development. Craniosynostosis is a congenital malformation caused by premature fusion of cranial sutures. While the progenitor cells derived from the cranial suture complex should prove valuable for studying the molecular mechanisms underlying suture development and pathogenic premature suture fusion, primary human cranial suture progenitors (SuPs) have limited life span and gradually lose osteoblastic ability over passages. To overcome technical challenges in maintaining sufficient and long-term culture of SuPs for suture biology studies, we establish and characterize the reversibly immortalized human cranial suture progenitors (iSuPs). Using a reversible immortalization system expressing SV40 T flanked with FRT sites, we demonstrate that primary human suture progenitor cells derived from the patent sutures of craniosynostosis patients can be efficiently immortalized. The iSuPs maintain long-term proliferative activity, express most of the consensus MSC markers and can differentiate into osteogenic and adipogenic lineages upon BMP9 stimulation in vitro and in vivo. The removal of SV40 T antigen by FLP recombinase results in a decrease in cell proliferation and an increase in the endogenous osteogenic and adipogenic capability in the iSuPs. Therefore, the iSuPs should be a valuable resource to study suture development, intramembranous ossification and the pathogenesis of craniosynostosis, as well as to explore cranial bone tissue engineering.


Assuntos
Suturas Cranianas/metabolismo , Craniossinostoses/genética , Efeito Fundador , Fatores de Diferenciação de Crescimento/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular , Linhagem Celular Transformada , Proliferação de Células , Suturas Cranianas/patologia , Craniossinostoses/metabolismo , Craniossinostoses/patologia , Expressão Gênica , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/metabolismo , Humanos , Lactente , Masculino , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/metabolismo , Transformação Genética
13.
Cell Physiol Biochem ; 41(2): 484-500, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28214873

RESUMO

BACKGROUND: BMP9 induces both osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs). Nell1 is a secretory glycoprotein with osteoinductive and anti-adipogenic activities. We investigated the role of Nell1 in BMP9-induced osteogenesis and adipogenesis in MSCs. METHODS: Previously characterized MSCs iMEFs were used. Overexpression of BMP9 and NELL1 or silencing of mouse Nell1 was mediated by adenoviral vectors. Early and late osteogenic and adipogenic markers were assessed by staining techniques and qPCR analysis. In vivo activity was assessed in an ectopic bone formation model of athymic mice. RESULTS: We demonstrate that Nell1 expression was up-regulated by BMP9. Exogenous Nell1 potentiated BMP9-induced late stage osteogenic differentiation while inhibiting the early osteogenic marker. Forced Nell1 expression enhanced BMP9-induced osteogenic regulators/markers and inhibited BMP9-upregulated expression of adipogenic regulators/markers in MSCs. In vivo ectopic bone formation assay showed that exogenous Nell1 expression enhanced mineralization and maturity of BMP9-induced bone formation, while inhibiting BMP9-induced adipogenesis. Conversely, silencing Nell1 expression in BMP9-stimulated MSCs led to forming immature chondroid-like matrix. CONCLUSION: Our findings indicate that Nell1 can be up-regulated by BMP9, which in turn accelerates and augments BMP9-induced osteogenesis. Exogenous Nell1 may be exploited to enhance BMP9-induced bone formation while overcoming BMP9-induced adipogenesis in regenerative medicine.


Assuntos
Adipogenia , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular , Glicoproteínas/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Osteogênese , Adipogenia/efeitos dos fármacos , Animais , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/genética , Fator 2 de Diferenciação de Crescimento/genética , Células HEK293 , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Osteogênese/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transplante Homólogo
14.
Cell Physiol Biochem ; 41(6): 2383-2398, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28463838

RESUMO

BACKGROUND/AIMS: While recombinant adenoviruses are among the most widely-used gene delivery vectors and usually propagated in HEK-293 cells, generating recombinant adenoviruses remains time-consuming and labor-intense. We sought to develop a rapid adenovirus production and amplification (RAPA) line by assessing human Ad5 genes (E1A, E1B19K/55K, pTP, DBP, and DNA Pol) and OCT1 for their contributions to adenovirus production. METHODS: Stable transgene expression in 293T cells was accomplished by using piggyBac system. Transgene expression was determined by qPCR. Adenoviral production was assessed with titering, fluorescent markers and/or luciferase activity. Osteogenic activity was assessed by measuring alkaline phosphatase activity. RESULTS: Overexpression of both E1A and pTP led to a significant increase in adenovirus amplification, whereas other transgene combinations did not significantly affect adenovirus amplification. When E1A and pTP were stably expressed in 293T cells, the resultant RAPA line showed high efficiency in adenovirus amplification and production. The produced AdBMP9 infected mesenchymal stem cells with highest efficiency and induced most effective osteogenic differentiation. Furthermore, adenovirus production efficiency in RAPA cells was dependent on the amount of transfected DNA. Under optimal transfection conditions high-titer adenoviruses were obtained within 5 days of transfection. CONCLUSION: The RAPA cells are highly efficient for adenovirus production and amplification.


Assuntos
Adenoviridae/fisiologia , Biotecnologia/métodos , Engenharia Genética , Vetores Genéticos/metabolismo , Adenoviridae/genética , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Diferenciação Celular , Linhagem Celular , Citometria de Fluxo , Vetores Genéticos/genética , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Células HEK293 , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
15.
Cell Physiol Biochem ; 41(5): 1905-1923, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28384643

RESUMO

BACKGROUND/AIMS: Mesenchymal stem cells (MSCs) are multipotent progenitors that can differentiate into several lineages including bone. Successful bone formation requires osteogenesis and angiogenesis coupling of MSCs. Here, we investigate if simultaneous activation of BMP9 and Notch signaling yields effective osteogenesis-angiogenesis coupling in MSCs. METHODS: Recently-characterized immortalized mouse adipose-derived progenitors (iMADs) were used as MSC source. Transgenes BMP9, NICD and dnNotch1 were expressed by adenoviral vectors. Gene expression was determined by qPCR and immunohistochem¡stry. Osteogenic activity was assessed by in vitro assays and in vivo ectopic bone formation model. RESULTS: BMP9 upregulated expression of Notch receptors and ligands in iMADs. Constitutively-active form of Notch1 NICD1 enhanced BMP9-induced osteogenic differentiation both in vitro and in vivo, which was effectively inhibited by dominant-negative form of Notch1 dnNotch1. BMP9- and NICD1-transduced MSCs implanted with a biocompatible scaffold yielded highly mature bone with extensive vascularization. NICD1 enhanced BMP9-induced expression of key angiogenic regulators in iMADs and Vegfa in ectopic bone, which was blunted by dnNotch1. CONCLUSION: Notch signaling may play an important role in BMP9-induced osteogenesis and angiogenesis. It's conceivable that simultaneous activation of the BMP9 and Notch pathways should efficiently couple osteogenesis and angiogenesis of MSCs for successful bone tissue engineering.


Assuntos
Fator 2 de Diferenciação de Crescimento/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Osteogênese , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Fator 2 de Diferenciação de Crescimento/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Receptor Notch1/genética
16.
Proc Natl Acad Sci U S A ; 111(25): 9241-6, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927592

RESUMO

The selective autophagy substrate p62 serves as a molecular link between autophagy and cancer. Suppression of autophagy causes p62 accumulation and thereby contributes to tumorigenesis. Here we demonstrate that autophagy deficiency promotes cell proliferation and migration through p62-dependent stabilization of the oncogenic transcription factor Twist1. p62 binds to Twist1 and inhibits degradation of Twist1. In mice, p62 up-regulation promotes tumor cell growth and metastasis in a Twist1-dependent manner. Our findings demonstrate that Twist1 is a key downstream effector of p62 in regulation of cell proliferation and migration and suggest that targeting p62-mediated Twist1 stabilization is a promising therapeutic strategy for prevention and treatment of cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Movimento Celular/genética , Proliferação de Células , Feminino , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Proteínas Nucleares/genética , Estabilidade Proteica , Proteína Sequestossoma-1 , Proteína 1 Relacionada a Twist/genética
17.
Lab Invest ; 96(2): 116-36, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26618721

RESUMO

The canonical WNT/ß-catenin signaling pathway governs a myriad of biological processes underlying the development and maintenance of adult tissue homeostasis, including regulation of stem cell self-renewal, cell proliferation, differentiation, and apoptosis. WNTs are secreted lipid-modified glycoproteins that act as short-range ligands to activate receptor-mediated signaling pathways. The hallmark of the canonical pathway is the activation of ß-catenin-mediated transcriptional activity. Canonical WNTs control the ß-catenin dynamics as the cytoplasmic level of ß-catenin is tightly regulated via phosphorylation by the 'destruction complex', consisting of glycogen synthase kinase 3ß (GSK3ß), casein kinase 1α (CK1α), the scaffold protein AXIN, and the tumor suppressor adenomatous polyposis coli (APC). Aberrant regulation of this signaling cascade is associated with varieties of human diseases, especially cancers. Over the past decade, significant progress has been made in understanding the mechanisms of canonical WNT signaling. In this review, we focus on the current understanding of WNT signaling at the extracellular, cytoplasmic membrane, and intracellular/nuclear levels, including the emerging knowledge of cross-talk with other pathways. Recent progresses in developing novel WNT pathway-targeted therapies will also be reviewed. Thus, this review is intended to serve as a refresher of the current understanding about the physiologic and pathogenic roles of WNT/ß-catenin signaling pathway, and to outline potential therapeutic opportunities by targeting the canonical WNT pathway.


Assuntos
Carcinogênese , Neoplasias/tratamento farmacológico , Células-Tronco , Proteínas Wnt , Via de Sinalização Wnt , Animais , Descoberta de Drogas , Humanos , Camundongos
18.
Cell Physiol Biochem ; 39(3): 871-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27497986

RESUMO

BACKGROUND/AIMS: Ovarian cancer is the most lethal gynecologic malignancy, and there is an unmet clinical need to develop new therapies. Although showing promising anticancer activity, Niclosamide may not be used as a monotherapy. We seek to investigate whether inhibiting IGF signaling potentiates Niclosamide's anticancer efficacy in human ovarian cancer cells. METHODS: Cell proliferation and migration are assessed. Cell cycle progression and apoptosis are analyzed by flow cytometry. Inhibition of IGF signaling is accomplished by adenovirus-mediated expression of siRNAs targeting IGF-1R. Cancer-associated pathways are assessed using pathway-specific reporters. Subcutaneous xenograft model is used to determine anticancer activity. RESULTS: We find that Niclosamide is highly effective on inhibiting cell proliferation, cell migration, and cell cycle progression, and inducing apoptosis in human ovarian cancer cells, possibly by targeting multiple signaling pathways involved in ELK1/SRF, AP-1, MYC/MAX and NFkB. Silencing IGF-1R exert a similar but weaker effect than that of Niclosamide's. However, silencing IGF-1R significantly sensitizes ovarian cancer cells to Niclosamide-induced anti-proliferative and anticancer activities both in vitro and in vivo. CONCLUSION: Niclosamide as a repurposed anticancer agent may be more efficacious when combined with agents that target other signaling pathways such as IGF signaling in the treatment of human cancers including ovarian cancer.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Niclosamida/farmacologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , RNA Interferente Pequeno/genética , Receptor IGF Tipo 1/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Antiparasitários/farmacologia , Apoptose/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Reposicionamento de Medicamentos , Feminino , Células HEK293 , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , RNA Interferente Pequeno/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
19.
Anal Biochem ; 515: 33-39, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27677936

RESUMO

The presence of the dense hydroxyapatite matrix within human bone limits the applicability of conventional protocols for protein extraction. This has hindered the complete and accurate characterization of the human bone proteome thus far, leaving many bone-related disorders poorly understood. We sought to refine an existing method of protein extraction from mouse bone to extract whole proteins of varying molecular weights from human cranial bone. Whole protein was extracted from human cranial suture by mechanically processing samples using a method that limits protein degradation by minimizing heat introduction to proteins. The presence of whole protein was confirmed by western blotting. Mass spectrometry was used to sequence peptides and identify isolated proteins. The data have been deposited to the ProteomeXchange with identifier PXD003215. Extracted proteins were characterized as both intra- and extracellular and had molecular weights ranging from 9.4 to 629 kDa. High correlation scores among suture protein spectral counts support the reproducibility of the method. Ontology analytics revealed proteins of myriad functions including mediators of metabolic processes and cell organelles. These results demonstrate a reproducible method for isolation of whole protein from human cranial bone, representing a large range of molecular weights, origins and functions.


Assuntos
Proteoma/isolamento & purificação , Proteômica/métodos , Crânio/química , Animais , Durapatita/química , Humanos , Camundongos , Proteoma/metabolismo , Crânio/metabolismo
20.
Cells Tissues Organs ; 201(1): 38-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26447649

RESUMO

The intervertebral disc (IVD) is a fibrocartilaginous joint between two vertebral bodies. An IVD unit consists of a gelatinous central nucleus pulposus, encased by the annulus fibrosus, which is sandwiched between cartilaginous endplates (EPs). The IVD homeostasis can be disrupted by injuries, ageing and/or genetic predispositions, leading to degenerative disc disorders and subsequent lower back pain. The complex structure and distinct characteristics of IVDs warrant the establishment of robust in vitro IVD organ culture for studying the etiology and treatment of disc degeneration. Here, we isolate mouse lumbar IVDs and culture the minimal IVD units in submersion or suspension medium supplemented with 2% bovine serum or 10% fetal bovine serum (FBS). We find the minimal IVD units remain healthy for up to 14 days when cultured in submersion culture supplemented with 10% FBS. New bone formation in the EPs of the cultured IVDs can be assessed with calcein labeling. Furthermore, the cultured IVDs can be effectively transduced by recombinant adenovirus, and transgene expression lasts for 2 weeks. Thus, our findings demonstrate that the optimized IVD organ culture system can be used to study IVD biology and screen for biological factors that may prevent, alleviate and/or treat disc degeneration.


Assuntos
Disco Intervertebral/citologia , Técnicas de Cultura de Órgãos/métodos , Adenoviridae/genética , Animais , Linhagem Celular , Proliferação de Células , Células HEK293 , Humanos , Degeneração do Disco Intervertebral/terapia , Região Lombossacral/fisiologia , Masculino , Camundongos , Antígeno Nuclear de Célula em Proliferação/biossíntese , Transdução Genética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA