Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(22): e2200230119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617432

RESUMO

Brain metastases, including prevalent breast-to-brain metastasis (B2BM), represent an urgent unmet medical need in the care of cancer due to a lack of effective therapies. Immune evasion is essential for cancer cells to metastasize to the brain tissue for brain metastasis. However, the intrinsic genetic circuits that enable cancer cells to avoid immune-mediated killing in the brain microenvironment remain poorly understood. Here, we report that a brain-enriched long noncoding RNA (BMOR) expressed in B2BM cells is required for brain metastasis development and is both necessary and sufficient to drive cancer cells to colonize the brain tissue. Mechanistically, BMOR enables cancer cells to evade immune-mediated killing in the brain microenvironment for the development of brain metastasis by binding and inactivating IRF3. In preclinical brain metastasis murine models, locked nucleic acid-BMOR, a designed silencer targeting BMOR, is effective in suppressing the metastatic colonization of cancer cells in the brain for brain metastasis. Taken together, our study reveals a mechanism underlying B2BM immune evasion during cancer cell metastatic colonization of brain tissue for brain metastasis, where B2BM cells evade immune-mediated killing in the brain microenvironment by acquiring a brain-enriched long noncoding RNA genetic feature.


Assuntos
Neoplasias Encefálicas , Encéfalo , Neoplasias da Mama , Evasão da Resposta Imune , RNA Longo não Codificante , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/secundário , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Evasão da Resposta Imune/genética , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral
2.
Toxins (Basel) ; 13(2)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670744

RESUMO

The frequency of harmful algal blooms (HABs) has increased in China in recent years. Information about harmful dinoflagellates and paralytic shellfish toxins (PSTs) is still limited in China, especially in the Beibu Gulf, where PSTs in shellfish have exceeded food safety guidelines on multiple occasions. To explore the nature of the threat from PSTs in the region, eight Alexandrium strains were isolated from waters of the Beibu Gulf and examined using phylogenetic analyses of large subunit (LSU) rDNA, small subunit (SSU) rDNA, and internal transcribed spacer (ITS) sequences. Their toxin composition profiles were also determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). All eight strains clustered in the phylogenetic tree with A. pseudogonyaulax, A. affine, and A. tamiyavanichii from other locations, forming three well-resolved groups. The intraspecific genetic distances of the three Alexandrium species were significantly smaller than interspecific genetic distances for Alexandrium species. Beibu Gulf isolates were therefore classified as A. pseudogonyaulax, A. affine, and A. tamiyavanichii. No PSTs were identified in A. pseudogonyaulax, but low levels of gonyautoxins (GTXs) 1 to 5, and saxitoxin (STX) were detected in A. tamiyavanichii (a total of 4.60 fmol/cell). The extremely low level of toxicity is inconsistent with PST detection above regulatory levels on multiple occasions within the Beibu Gulf, suggesting that higher toxicity strains may occur in those waters, but were unsampled. Other explanations including biotransformation of PSTs in shellfish and the presence of other PST-producing algae are also suggested. Understanding the toxicity and phylogeny of Alexandrium species provides foundational data for the protection of public health in the Beibu Gulf region and the mitigation of HAB events.


Assuntos
Dinoflagellida/metabolismo , Proliferação Nociva de Algas , Saxitoxina/análogos & derivados , Saxitoxina/metabolismo , Intoxicação por Frutos do Mar/microbiologia , Frutos do Mar/microbiologia , Microbiologia da Água , Dinoflagellida/genética , Dinoflagellida/crescimento & desenvolvimento , Monitoramento Ambiental , Filogenia , Ribotipagem , Medição de Risco , Saxitoxina/genética
3.
Exp Hematol Oncol ; 10(1): 54, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798909

RESUMO

Hepatocellular carcinoma (HCC) is a common malignancy in human. CD44 is a transmembrane glycoprotein which is frequently overexpressed in cancer of various origins. The function and mechanism of CD44 in HCC remains elusive. In this study, we reported that CD44 was overexpressed in HCC to promote the proliferation and migration of HCC cells via oncogenic YAP, which is the key downstream regulator in Hippo pathway. These findings suggest that CD44-YAP is a probable important axis in pathogenesis of HCC, providing an insight in to HCC pathogenesis as well as potential targets for the intervention of HCC.

4.
Toxins (Basel) ; 13(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34564646

RESUMO

Ciguatera poisoning is mainly caused by the consumption of reef fish that have accumulated ciguatoxins (CTXs) produced by the benthic dinoflagellates Gambierdiscus and Fukuyoa. China has a long history of problems with ciguatera, but research on ciguatera causative organisms is very limited, especially in the Beibu Gulf, where coral reefs have been degraded significantly and CTXs in reef fish have exceeded food safety guidelines. Here, five strains of Gambierdiscus spp. were collected from Weizhou Island, a ciguatera hotspot in the Beibu Gulf, and identified by light and scanning electron microscopy and phylogenetic analyses based on large and small subunit rDNA sequences. Strains showed typical morphological characteristics of Gambierdiscus caribaeus, exhibiting a smooth thecal surface, rectangular-shaped 2', almost symmetric 4″, and a large and broad posterior intercalary plate. They clustered in the phylogenetic tree with G. caribaeus from other locations. Therefore, these five strains belonged to G. caribaeus, a globally distributed Gambierdiscus species. Toxicity was determined through the mouse neuroblastoma assay and ranged from 0 to 5.40 fg CTX3C eq cell-1. The low level of toxicity of G. caribaeus in Weizhou Island, with CTX-contaminated fish above the regulatory level in the previous study, suggests that the long-term presence of low toxicity G. caribaeus might lead to the bioaccumulation of CTXs in fish, which can reach dangerous CTX levels. Alternatively, other highly-toxic, non-sampled strains could be present in these waters. This is the first report on toxic Gambierdiscus from the Beibu Gulf and Chinese waters and will provide a basis for further research determining effective strategies for ciguatera management in the area.


Assuntos
Ciguatoxinas/análise , Dinoflagellida/química , China , Ciguatera , Recifes de Corais , Dinoflagellida/isolamento & purificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA