Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(64): e202301796, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37503795

RESUMO

A metal-free natural dye has been developed to selectively convert methane to methyl trifluoroacetate (CH3 TFA) using visible light, probably due to the formation of a chloride-bridged dimer undergoing fast intra-complex charge transfer.

2.
Inorg Chem ; 62(30): 11809-11816, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37466947

RESUMO

Metal-organic frameworks (MOFs) built from fluorescent ligands frequently exhibit enhanced fluorescence when doped with inert ligands. This study focuses on a MOF of the UiO-68 structure, which is built from a fluorescent dibenzoate-anthracene ligand doped with a dibenzoate-benzene ligand. Our investigation aims to understand the mechanism behind the doping-enhanced emission of this MOF. We rule out several possible mechanisms, including exciton coupling, electron transfer between ligand and metal center, and ligand intersystem crossing induced by the metal center. Inhibition of the interligand charge transfer is considered a possible way to enhance emission. Furthermore, we propose that the conformational change of the anthracene-based ligand in the MOF cavity is also a way for enhancement. Our molecular dynamics simulations of the MOF structure filled with solvents reveal that the steric crowding in the cavity induces a conformational change at different doping levels, affecting the rate of intersystem crossing of the ligand.

3.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362084

RESUMO

A lobed leaf is a common trait in plants, but it is very rare in Lauraceae plants, including species of Phoebe. In the study of germplasm resources of Phoebe neurantha, we found lobed leaf variant seedlings, and the variation could be inherited stably. Studying the lobed leaf mechanism of P. neurantha var. lobophylla can offer insight into the leaf development mechanism of woody plants. RNA-seq and small RNA-seq analysis results showed that a total of 8091 differentially expressed genes (DEGs) and 16 differentially expressed miRNAs were identified in P. neurantha var. lobophylla. Considering previous research results, a leaf margin morphological development related miRNA, pne-miRNA319a, was primary identified as a candidate miRNA. Target gene prediction showed that a total of 2070 genes were predicted to be the target genes of differentially expressed miRNAs. GO enrichment analysis of differentially expressed target genes suggested that PnTCP2 is related to lobed leaf formation. The TRV-VIGS gene silencing of PnTCP2 led to lobed leaves in P. neurantha seedlings. The downregulation of PnTCP2 led to lobed leaves. The yeast two-hybrid test and bimolecular fluorescence complementation test confirmed that the PnTCP2 protein interacted with the PnLBD41 protein. Based on the expression analysis of gene-silenced leaves and RNA-seq and small RNA-seq analysis results, pne- miRNA319a and PnLBD41 might also play important roles in this process. In conclusion, PnTCP2 plays an important and vital role in the formation of the lobed leaves of P. neurantha var. lobophylla.


Assuntos
Lauraceae , MicroRNAs , Folhas de Planta/metabolismo , Lauraceae/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Transcriptoma
4.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216373

RESUMO

The R2R3-MYB is a large gene family involved in various plant functions, including carotenoid biosynthesis. However, this gene family lacks a comprehensive analysis in wolfberry (Lycium barbarum L.) and other Solanaceae species. The recent sequencing of the wolfberry genome provides an opportunity for investigating the organization and evolutionary characteristics of R2R3-MYB genes in wolfberry and other Solanaceae species. A total of 610 R2R3-MYB genes were identified in five Solanaceae species, including 137 in wolfberry. The LbaR2R3-MYB genes were grouped into 31 subgroups based on phylogenetic analysis, conserved gene structures, and motif composition. Five groups only of Solanaceae R2R3-MYB genes were functionally divergent during evolution. Dispersed and whole duplication events are critical for expanding the R2R3-MYB gene family. There were 287 orthologous gene pairs between wolfberry and the other four selected Solanaceae species. RNA-seq analysis identified the expression level of LbaR2R3-MYB differential gene expression (DEGs) and carotenoid biosynthesis genes (CBGs) in fruit development stages. The highly expressed LbaR2R3-MYB genes are co-expressed with CBGs during fruit development. A quantitative Real-Time (qRT)-PCR verified seven selected candidate genes. Thus, Lba11g0183 and Lba02g01219 are candidate genes regulating carotenoid biosynthesis in wolfberry. This study elucidates the evolution and function of R2R3-MYB genes in wolfberry and the four Solanaceae species.


Assuntos
Carotenoides/metabolismo , Genes de Plantas/genética , Genes myb/genética , Lycium/genética , Família Multigênica/genética , Proteínas de Plantas/genética , Solanaceae/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Filogenia , Fatores de Transcrição/genética
5.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955573

RESUMO

The B-box proteins (BBXs) are a family of zinc-finger transcription factors with one/two B-Box domain(s) and play important roles in plant growth and development as well as stress responses. Wolfberry (Lycium barbarum L.) is an important traditional medicinal and food supplement in China, and its genome has recently been released. However, comprehensive studies of BBX genes in Lycium species are lacking. In this study, 28 LbaBBX genes were identified and classified into five clades by a phylogeny analysis with BBX proteins from Arabidopsis thaliana and the LbaBBXs have similar protein motifs and gene structures. Promoter cis-regulatory element prediction revealed that LbaBBXs might be highly responsive to light, phytohormone, and stress conditions. A synteny analysis indicated that 23, 20, 8, and 5 LbaBBX genes were orthologous to Solanum lycopersicum, Solanum melongena, Capsicum annuum, and Arabidopsis thaliana, respectively. The gene pairs encoding LbaBBX proteins evolved under strong purifying selection. In addition, the carotenoid content and expression patterns of selected LbaBBX genes were analyzed. LbaBBX2 and LbaBBX4 might play key roles in the regulation of zeaxanthin and antheraxanthin biosynthesis. Overall, this study improves our understanding of LbaBBX gene family characteristics and identifies genes involved in the regulation of carotenoid biosynthesis in wolfberry.


Assuntos
Arabidopsis , Lycium , Arabidopsis/genética , Arabidopsis/metabolismo , Carotenoides , Regulação da Expressão Gênica de Plantas , Lycium/genética , Lycium/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
6.
Molecules ; 27(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35268665

RESUMO

Wolfberry (Lycium barbarum L.) is an important economic crop widely grown in China. The effects of salt-alkaline stress on metabolites accumulation in the salt-tolerant Ningqi1 wolfberry fruits were evaluated across 12 salt-alkaline stress gradients. The soil pH, Na+, K+, Ca2+, Mg2+, and HCO3- contents decreased at a gradient across the salt-alkaline stress gradients. Based on the widely-targeted metabolomics approach, we identified 457 diverse metabolites, 53% of which were affected by salt-alkaline stress. Remarkably, soil salt-alkaline stress enhanced metabolites accumulation in wolfberry fruits. Amino acids, alkaloids, organic acids, and polyphenols contents increased proportionally across the salt-alkaline stress gradients. In contrast, nucleic acids, lipids, hydroxycinnamoyl derivatives, organic acids and derivatives and vitamins were significantly reduced by high salt-alkaline stress. A total of 13 salt-responsive metabolites represent potential biomarkers for salt-alkaline stress tolerance in wolfberry. Specifically, we found that constant reductions of lipids and chlorogenic acids; up-regulation of abscisic acid and accumulation of polyamines are essential mechanisms for salt-alkaline stress tolerance in Ningqi1. Overall, we provide for the first time some extensive metabolic insights into salt-alkaline stress tolerance and key metabolite biomarkers which may be useful for improving wolfberry tolerance to salt-alkaline stress.


Assuntos
Lycium , Tolerância ao Sal , Frutas , Metabolômica , Salinidade , Estresse Salino , Estresse Fisiológico
7.
J Am Chem Soc ; 143(15): 5755-5762, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33843221

RESUMO

Discovery and optimization of new catalysts can be potentially accelerated by efficient data analysis using machine-learning (ML). In this paper, we record the process of searching for additives in the electrochemical deposition of Cu catalysts for CO2 reduction (CO2RR) using ML, which includes three iterative cycles: "experimental test; ML analysis; prediction and redesign". Cu catalysts are known for CO2RR to obtain a range of products including C1 (CO, HCOOH, CH4, CH3OH) and C2+ (C2H4, C2H6, C2H5OH, C3H7OH). Subtle changes in morphology and surface structure of the catalysts caused by additives in catalyst preparation can lead to dramatic shifts in CO2RR selectivity. After several ML cycles, we obtained catalysts selective for CO, HCOOH, and C2+ products. This catalyst discovery process highlights the potential of ML to accelerate material development by efficiently extracting information from a limited number of experimental data.

8.
Molecules ; 26(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34641575

RESUMO

In this work, TiO2/CdS nanocomposites with co-exposed {101}/[111]-facets (NH4F-TiO2/CdS), {101}/{010} facets (FMA-TiO2/CdS), and {101}/{010}/[111]-facets (HF-TiO2/CdS and Urea-TiO2/CdS) were successfully synthesized through a one-pot solvothermal method by using [Ti4O9]2- colloidal solution containing CdS crystals as the precursor. The crystal structure, morphology, specific surface area, pore size distribution, separation, and recombination of photogenerated electrons/holes of the TiO2/CdS nanocomposites were characterized. The photocatalytic activity and cycling performance of the TiO2/CdS nanocomposites were also investigated. The results showed that as-prepared FMA-TiO2/CdS with co-exposed {101}/{010} facets exhibited the highest photocatalytic activity in the process of photocatalytic degradation of methyl orange (MO), and its degradation efficiency was 88.4%. The rate constants of FMA-TiO2/CdS was 0.0167 min-1, which was 55.7, 4.0, 3.7, 3.5, 3.3, and 1.9 times of No catalyst, CdS, HF-TiO2/CdS, NH4F-TiO2/CdS, CM-TiO2, Urea-TiO2/CdS, respectively. The highest photocatalytic activity of FMA-TiO2/CdS could be attributed to the synergistic effects of the largest surface energy, co-exposed {101}/{010} facets, the lowest photoluminescence intensity, lower charge-transfer resistance, and a higher charge-transfer efficiency.

9.
J Am Chem Soc ; 141(44): 17875-17883, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31603671

RESUMO

Pyridinium has been shown to be a cocatalyst for the electrochemical reduction of CO2 on metal and semiconductor electrodes, but its exact role has been difficult to elucidate. In this work, we create cooperative cobalt-protoporphyrin (CoPP) and pyridine/pyridinium (py/pyH+) catalytic sites on metal-organic layers (MOLs) for an electrocatalytic CO2 reduction reaction (CO2RR). Constructed from [Hf6(µ3-O)4(µ3-OH)4(HCO2)6] secondary building units (SBUs) and terpyridine-based tricarboxylate ligands, the MOL was postsynthetically functionalized with CoPP via carboxylate exchange with formate capping groups. The CoPP group and the pyridinium (pyH+) moiety on the MOL coactivate CO2 by forming the [pyH+--O2C-CoPP] adduct, which enhances the CO2RR and suppresses hydrogen evolution to afford a high CO/H2 selectivity of 11.8. Cooperative stabilization of the [pyH+--O2C-CoPP] intermediate led to a catalytic current density of 1314 mA/mgCo for CO production at -0.86 VRHE, which corresponds to a turnover frequency of 0.4 s-1.

10.
Carbohydr Polym ; 327: 121705, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171667

RESUMO

Utilizing renewable natural resources to construct multifunctional packaging materials is critical to achieving sustainable development in the food packaging industry. In this study, we crafted transparent films with comprehensive UV-shielding and antioxidant properties by blending a multicomponent chitosan complex with polyvinyl alcohol (PVA), subsequently applied to preserve peanut butter. The multicomponent chitosan complex, synthesized from chitosan, ferulic acid (FA), and 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-7-carboxylic acid (TPCA) through direct heating in water, served as the foundation. This chitosan complex was seamlessly blended with PVA, resulting in the creation of a transparent film through the solvent casting method. A meticulous investigation into the chemical structure and physicochemical properties of the blended films was conducted. The FA and TPCA components exhibited robust ultraviolet absorption properties, conferring virtually complete full-band ultraviolet shielding ability to the blend film. Additionally, FA endowed the blended film with significant antioxidant activity. The effectiveness of the chitosan complex/PVA blended film in preserving peanut butter from oxidative spoilage was demonstrated, showcasing its robustness in food preservation. Our research underscores the significance of creating advanced packaging materials from sustainable sources.


Assuntos
Antioxidantes , Quitosana , Antioxidantes/química , Álcool de Polivinil/química , Quitosana/química , Embalagem de Alimentos/métodos , Antibacterianos/química
11.
Chem Commun (Camb) ; 59(38): 5737-5740, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37092587

RESUMO

Metal NP @ metal-organic frameworks (MOFs) are widely used in electrocatalysis. However, many of the MOFs are poorly conductive. Here, we loaded bismuth (Bi) into a Zr-based MOF of the UiO structure that is active for CO2 reduction to formate and found that a moderate conductivity of the nanosized MOFs is sufficient to support a reasonably high catalytic current density. This finding allows simpler catalyst design and quantitative rationalization of MOF electrocatalysis.

12.
Front Plant Sci ; 13: 900870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937341

RESUMO

Machilus microcarpa is a rare national tree species in China and possesses important ornamental and ecological value. M. microcarpa can be planted in low-temperature areas, depending on whether its seedlings can withstand the harm. To face this problem, the annual seedlings of M. microcarpa were subjected to five temperature treatments, and eight physiological indicators were measured. Furthermore, comparative transcriptome analysis was performed between M. microcarpa leaves treated at 25°C and -2.8°C. A total of 9,385 differentially expressed genes (DEGs) were involved in low-temperature stress in M. microcarpa. An upregulated (cobA) and five downregulated (HEM, CHLM, CRD, CLH, and PORA) genes associated with the porphyrin and chlorophyll metabolism pathway may reduce chlorophyll synthesis under low-temperature stress. Upregulation of six DEGs (two GAPDHs, PFK, PGAM, PDC, and PK) involved in the glycolysis/gluconeogenesis pathway provided energy for M. microcarpa under adverse cold conditions. Thirteen upregulated and seven downregulated genes related to antioxidant enzymes were also observed under low-temperature stress. Candidate transcription factors (TFs) played key roles in signal transduction under low-temperature stress in M. microcarpa, and quantitative real-time PCR (qRT-PCR) analysis validated the RNA-seq data. The results provide valuable information for further studies on the cold response mechanisms for low-temperature stress in M. microcarpa.

14.
Oncotarget ; 8(61): 104359-104366, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262646

RESUMO

OBJECTIVE: To investigate the effects of miR-218 on expression of hypoxia-inducible factors 1α (HIF-1α), vascular endothelial growth factor (VEGF) and cell apoptosis in normal mice aortic endothelial cells under intermittent hypoxia (IH) condition. METHODS: Anti-miR-218 inhibitor, miR-negative control and miR-218 mimic were used to tranfect the cells in different groups under IH condition. Both RT-PCR and Western blot were used to determine the expressions of HIF-1α and VEGF. Akt, p-Akt and cell apoptosis related proteins bcl-2, bax and caspase-3 and roundabout 1 (Robo1) were measured using Western blot. Cell apoptosis was evaluated by flow cytometry. Statistical analysis was performed using SPSS 18.0. RESULTS: Expression of miR-218 was significantly up-regulated in the IH group and was significantly inhibited when cells were transfected with miR-218 inhibitor. Down regulation of miR-218 could reduce the expression of HIF-1α and VEGF under intermittent hypoxia condition. In cells transfected with miR-218 mimic, expression of HIF-1α and VEGF significantly increased compared with the control. However, when treated with LY294002, the expression of HIF-1α and VEGF both decreased. Apoptosis assay showed that down regulation of miR-218 could inhibit intermittent hypoxia induced cell apoptosis, decrease expression of caspase-3 and bax and increase expression of bcl-2 under intermittent hypoxia condition. At last, silencing Robo1 could significantly enhance the expression of HIF-1α under IH condition. CONCLUSION: Inhibition of miR-218 could reduce the expression of HIF-1α and protect against IH-induced apoptosis in mice aortic endothelial cells. The effects were associated with PI3K/AKT pathway and might through targeting of Robo1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA