1.
Entropy (Basel)
; 25(4)2023 Apr 18.
Artigo
em Inglês
| MEDLINE
| ID: mdl-37190461
RESUMO
In this study, we examined the effect of charging current density on the hydrogen embrittlement (HE) of MEA and the associated HE mechanisms using electron backscattered diffraction (EBSD). Results show that MEA is susceptible to HE, but is stronger than as-rolled and 3D-printed Cantor alloy and stainless steel. The HE susceptibility of MEA decreases with increasing current density. Ductile fracture with transgranular dimples switches to intergranular brittle fracture with clear slip bands in the interior of grains. EBSD results uncovered that hydrogen facilitates localized slips and deformation twins. Hydrogen-enhanced localized plasticity and hydrogen decohesion are the possible HE mechanisms.