Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 42(3): 216-229, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38035715

RESUMO

The high prevalence and complex etiology of renal diseases already impose a heavy disease burden on patients and society. In certain kidney diseases such as acute kidney injury and chronic kidney disease, current treatments are limited to slowing rather than stabilizing or reversing disease progression. Therefore, it is crucial to study the pathological mechanisms of kidney disease and discover new therapeutic targets and effective therapeutic drugs. As cell-free therapeutic strategies are continually being developed, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have emerged as a hot topic for research in the field of renal diseases. Studies have demonstrated that MSC-EVs not only reproduce the therapeutic effects of MSCs but also localize to damaged kidney tissue. Compared to MSCs, MSC-EVs have several advantages, including ease of preservation, low immunogenicity, an inability to directly form tumors, and ease of artificial modification. Exploring the detailed mechanisms of MSC-EVs by developing standardized culture, isolation, purification, and drug delivery strategies will help facilitate their clinical application in kidney diseases. Here, we provide a comprehensive overview of studies about MSC-EVs in kidney diseases and discuss their limitations at the human nephrology level.


Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Renal Crônica , Humanos , Rim/patologia , Insuficiência Renal Crônica/terapia
2.
Clin Exp Nephrol ; 27(2): 122-131, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36326941

RESUMO

PURPOSE: The nephrotoxicity caused by cisplatin severely limits the application and affects related platinum-based therapeutics. Neferine is a dibenzylisoquinoline alkaloid extracted from a Chinese medicinal herb (Nelumbo nucifera Gaertn), which can decrease cisplatin-induced apoptosis of NRK-52E cells by activating autophagy in vitro in our previous study. In this article, we aimed to further investigate the protective effect of neferine, against to the cispltain-induced kidney damage in mice. METHODS: Six groups were designed in our study. Renal index, mice serum creatinine and blood urea nitrogen levels were detected after the mice were killed. HE staining was used to observe the pathological changes of each group. The apoptosis of mouse kidney tissue was detected by TUNEL. Immunofluorescence and Western blot were used to detect the expression of cleaved-caspase3 and LC3. The transmission electron microscope was used to reveal the changes of apoptosis and autophagy of renal tubular epithelial cells in different groups. RESULTS: In our findings, the pathological changes of acute kidney injury were easily observed in cisplatin-treated mice while those in the neferine-pretreated groups were significantly alleviated. The apoptosis induced by cisplatin in mice increased evidently compared with the control group, which was decreased in the mice with neferine pretreatment. What' more, we found that autophagy increased obviously in mice pretreated by neferine contrast to the cisplatin-treated mice. CONCLUSION: In our study, neferine can effectively alleviate cisplatin-induced renal injury in mice, as well act as an autophagy-regulator in kidney protection.


Assuntos
Injúria Renal Aguda , Apoptose , Autofagia , Cisplatino , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Cisplatino/efeitos adversos , Cisplatino/toxicidade , Rim/patologia , Medicamentos de Ervas Chinesas/farmacologia
3.
Biomater Sci ; 12(10): 2579-2598, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38679944

RESUMO

Epidemiological studies reveal that symptoms of temporomandibular joint disorders (TMDs) occur in 60-70% of adults. The inflammatory damage caused by TMDs can easily lead to defects in the articular disc, condylar cartilage, subchondral bone and muscle of the temporomandibular joint (TMJ) and cause pain. Despite the availability of various methods for treating TMDs, few existing treatment schemes can achieve permanent recovery. This necessity drives the search for new approaches. Hydrogels, polymers with high water content, have found widespread use in tissue engineering and regeneration due to their excellent biocompatibility and mechanical properties, which resemble those of human tissues. In the context of TMD therapy, numerous experiments have demonstrated that hydrogels show favorable effects in aspects such as articular disc repair, cartilage regeneration, muscle repair, pain relief, and drug delivery. This review aims to summarize the application of hydrogels in the therapy of TMDs based on recent research findings. It also highlights deficiencies in current hydrogel research related to TMD therapy and outlines the broad potential of hydrogel applications in treating TMJ diseases in the future.


Assuntos
Hidrogéis , Transtornos da Articulação Temporomandibular , Engenharia Tecidual , Hidrogéis/química , Humanos , Transtornos da Articulação Temporomandibular/terapia , Animais , Articulação Temporomandibular/cirurgia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
4.
Biomed Pharmacother ; 177: 116995, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917761

RESUMO

Osteoporosis is a prevalent bone metabolic disease that poses a significant challenge to global human health. Jaw osteoporosis, characterized by microstructural damage of the jaw resulting from various factors, is one of the common manifestations of this condition. Recent studies have demonstrated that jaw osteoporosis has multifaceted effects on oral health and can negatively impact conditions such as periodontitis, oral implantation, orthodontic treatment, and wound healing. However, there are still some limitations in the conventional treatment of osteoporosis. For instance, while bisphosphonates can enhance bone quality, they may also lead to osteonecrosis of the jaw, which poses a potential safety hazard in oral diagnosis and treatment. In recent years, considerable attention has been focused on improving the pathological condition of jaw osteoporosis. Treatment strategies such as gut microbial regulation, extracellular vesicles, molecular targeted therapy, herbal medicine, mechanical stimulation are expected to enhance efficacy and minimize adverse reactions. Therefore, understanding these effects and exploring novel treatments for jaw osteoporosis may provide new insights for oral health maintenance and disease treatment. This article reviews the impact of jaw osteoporosis on oral health and describes the limitations associated with current methods. It also discusses emerging perspectives on treatment, offering a comprehensive overview of the challenges and future directions in managing jaw osteoporosis.


Assuntos
Doenças Maxilomandibulares , Saúde Bucal , Osteoporose , Humanos , Osteoporose/terapia , Osteoporose/tratamento farmacológico , Doenças Maxilomandibulares/terapia , Doenças Maxilomandibulares/induzido quimicamente , Animais , Conservadores da Densidade Óssea/uso terapêutico , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/terapia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Difosfonatos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA