Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(12): 4495-500, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24616523

RESUMO

The process of nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and shown to be mediated by "Candidatus Methylomirabilis oxyfera" (M. oxyfera). Here, evidence for n-damo in three different freshwater wetlands located in southeastern China was obtained using stable isotope measurements, quantitative PCR assays, and 16S rRNA and particulate methane monooxygenase gene clone library analyses. Stable isotope experiments confirmed the occurrence of n-damo in the examined wetlands, and the potential n-damo rates ranged from 0.31 to 5.43 nmol CO2 per gram of dry soil per day at different depths of soil cores. A combined analysis of 16S rRNA and particulate methane monooxygenase genes demonstrated that M. oxyfera-like bacteria were mainly present in the deep soil with a maximum abundance of 3.2 × 10(7) gene copies per gram of dry soil. It is estimated that ∼0.51 g of CH4 m(-2) per year could be linked to the n-damo process in the examined wetlands based on the measured potential n-damo rates. This study presents previously unidentified confirmation that the n-damo process is a previously overlooked microbial methane sink in wetlands, and n-damo has the potential to be a globally important methane sink due to increasing nitrogen pollution.


Assuntos
Anaerobiose , Bactérias/metabolismo , Metano/metabolismo , Áreas Alagadas , Bactérias/classificação , Bactérias/genética , Genes Bacterianos , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
2.
Appl Microbiol Biotechnol ; 100(16): 7171-80, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27225473

RESUMO

In the current study, we investigated nitrite-dependent anaerobic methane oxidation (N-DAMO) as a potential methane sink in the Hangzhou Bay and the adjacent Zhoushan sea area. The potential activity of the N-DAMO process was primarily observed in Hangzhou Bay by means of (13)C-labeling experiments, whereas very low or no potential N-DAMO activity could be detected in the Zhoushan sea area. The measured potential N-DAMO rates ranged from 0.2 to 1.3 nmol (13)CO2 g(-1) (dry sediment) day(-1), and the N-DAMO potentially contributed 2.0-9.4 % to the total microbial methane oxidation in the examined sediments. This indicated that the N-DAMO process may be an alternative pathway in the coastal methane cycle. Phylogenetic analyses confirmed the presence of Candidatus Methylomirabilis oxyfera-like bacteria in all the examined sediments, while the group A members (the dominant bacteria responsible for N-DAMO) were found mainly in Hangzhou Bay. Quantitative PCR showed that the 16S rRNA gene abundance of Candidatus M. oxyfera-like bacteria varied from 5.4 × 10(6) to 5.0 × 10(7) copies g(-1) (dry sediment), with a higher abundance observed in Hangzhou Bay. In addition, the overlying water NO3 (-) concentration and salinity were identified as the most important factors influencing the abundance and potential activity of Candidatus M. oxyfera-like bacteria in the examined sediments. This study showed the evidence of N-DAMO in coastal environments and indicated the importance of N-DAMO as a potential methane sink in coastal environments.


Assuntos
Bactérias/metabolismo , Baías/microbiologia , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Nitratos/química , Nitritos/química , Anaerobiose , Sequência de Bases , DNA Bacteriano/genética , Marcação por Isótopo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Microbiologia do Solo
3.
Appl Microbiol Biotechnol ; 99(1): 349-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25242345

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered process that is catalysed by "Candidatus Methylomirabilis oxyfera". In the present study, the vertical distribution (0-10, 20-30, 50-60 and 90-100 cm) of M. oxyfera-like bacteria was investigated in Xiazhuhu wetland, the largest natural wetland on the southern Yangtze River (China). Phylogenetic analyses showed that group A of M. oxyfera-like bacteria and pmoA genes occurred primarily at depths of 50-60 and 90-100 cm. Quantitative PCR further confirmed the presence of M. oxyfera-like bacteria in soil cores from different depths, with the highest abundance of 5.1 × 10(7) copies g(-1) dry soil at depth of 50-60 cm. Stable isotope experiments demonstrated that the n-damo process occurred primarily at depths of 50-60 and 90-100 cm, with the potential rates ranging from 0.2 to 14.5 nmol CO2 g(-1) dry soil d(-1). It was estimated that the methane flux may increase by approximately 2.7-4.3% in the examined wetland in the absence of n-damo. This study shows that the deep wetland soils (50-60 and 90-100 cm) are the preferred habitats for M. oxyfera-like bacteria. The study also highlights the potential importance of these bacteria in the methane and nitrogen cycles in deep wetland soils.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Metano/metabolismo , Nitritos/metabolismo , Microbiologia do Solo , Anaerobiose , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Água Doce , Marcação por Isótopo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Áreas Alagadas
4.
Curr Microbiol ; 70(4): 562-70, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25519694

RESUMO

Microbial mediated nitrite-dependent anaerobic methane oxidation (N-DAMO), which couples the oxidation of methane to nitrite reduction, is a recently discovered process. The discovery of N-DAMO process makes great contributions to complete the biogeochemical cycles of carbon and nitrogen, and to develop novel economic biotechnology for simultaneous carbon and nitrogen removal. This process is catalysed by the unique bacterium "Candidatus Methylomirabilis oxyfera" (M. oxyfera), which belongs to the candidate phylum NC10, a phylum having no members in pure culture. In recent years, some microbiological properties of M. oxyfera have been unravelled. The most prominent examples are the discoveries of the special ultrastructure (star-like) of the cell shape and the unique chemical composition (10MeC16:1Δ7) of M. oxyfera that have not been found in other bacteria yet. More importantly, a new intra-aerobic pathway was discovered in M. oxyfera. It seems that M. oxyfera produces oxygen intracellularly by the conversion of two nitric oxide molecules to dinitrogen gas and oxygen, and the produced oxygen is then used for methane oxidation and normal respiration. The current paper is a systematic review in the microbiological properties of M. oxyfera, especially for its special properties.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Anaerobiose , Bactérias/química , Bactérias/ultraestrutura , Carbono/metabolismo , Redes e Vias Metabólicas/genética , Óxido Nítrico/metabolismo , Nitrogênio/metabolismo , Oxirredução , Oxigênio/metabolismo
5.
Appl Environ Microbiol ; 80(24): 7611-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261523

RESUMO

Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two of the most recent discoveries in the microbial nitrogen cycle. In the present study, we provide direct evidence for the cooccurrence of the anammox and n-damo processes in a flooded paddy field in southeastern China. Stable isotope experiments showed that the potential anammox rates ranged from 5.6 to 22.7 nmol N2 g(-1) (dry weight) day(-1) and the potential n-damo rates varied from 0.2 to 2.1 nmol CO2 g(-1) (dry weight) day(-1) in different layers of soil cores. Quantitative PCR showed that the abundance of anammox bacteria ranged from 1.0 × 10(5) to 2.0 × 10(6) copies g(-1) (dry weight) in different layers of soil cores and the abundance of n-damo bacteria varied from 3.8 × 10(5) to 6.1 × 10(6) copies g(-1) (dry weight). Phylogenetic analyses of the recovered 16S rRNA gene sequences showed that anammox bacteria affiliated with "Candidatus Brocadia" and "Candidatus Kuenenia" and n-damo bacteria related to "Candidatus Methylomirabilis oxyfera" were present in the soil cores. It is estimated that a total loss of 50.7 g N m(-2) per year could be linked to the anammox process, which is at intermediate levels for the nitrogen flux ranges of aerobic ammonium oxidation and denitrification reported in wetland soils. In addition, it is estimated that a total of 0.14 g CH4 m(-2) per year could be oxidized via the n-damo process, while this rate is at the lower end of the aerobic methane oxidation rates reported in wetland soils.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Metano/metabolismo , Nitritos/metabolismo , Microbiologia do Solo , Anaerobiose , Bactérias/classificação , Bactérias/genética , China , Inundações , Dados de Sequência Molecular , Oxirredução , Filogenia
6.
Front Microbiol ; 3: 269, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905032

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-damo), which couples the anaerobic oxidation of methane to denitrification, is a recently discovered process mediated by "Candidatus Methylomirabilis oxyfera." M. oxyfera is affiliated with the "NC10" phylum, a phylum having no members in pure culture. Based on the isotopic labeling experiments, it is hypothesized that M. oxyfera has an unusual intra-aerobic pathway for the production of oxygen via the dismutation of nitric oxide into dinitrogen gas and oxygen. In addition, the bacterial species has a unique ultrastructure that is distinct from that of other previously described microorganisms. M. oxyfera-like sequences have been recovered from different natural habitats, suggesting that the n-damo process potentially contributes to global carbon and nitrogen cycles. The n-damo process is a process that can reduce the greenhouse effect, as methane is more effective in heat-trapping than carbon dioxide. The n-damo process, which uses methane instead of organic matter to drive denitrification, is also an economical nitrogen removal process because methane is a relatively inexpensive electron donor. This mini-review summarizes the peculiar microbiology of M. oxyfera and discusses the potential ecological importance and engineering application of the n-damo process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA