Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612207

RESUMO

The aim of this article is to explore the dynamic compaction characteristics of stone mastic asphalt (SMA) and the friction-lubrication effect of internal particles during the superpave gyratory compaction (SGC) process. Firstly, a calculated method for the compaction degree of an asphalt mixture in the gyratory compaction process was defined based on the multiphase granular volume method. Secondly, the gyratory compaction curves of asphalt mixtures were taken based on this calculation method of compaction degree. The dynamic change law of each compaction index (compaction, percentage of air voids, compaction energy index, etc.) during the compaction process was analysed. Finally, the effects of different initial compaction temperatures and different asphalt content on the friction-lubrication effect and compaction characteristics of asphalt mixtures were studied. Research shows that it is reasonable to define the compaction degree by the ratio of the apparent density of the asphalt mixture to the maximum theoretical density of the asphalt mixture during gyratory compaction. The dynamic prediction equations of the compaction degree K and the compaction energy index CEI with the amount of compaction were established, and could effectively predict the compaction degree, percentage of air voids and compaction energy index CEI. The compaction process of the asphalt mixture needed to go through three phases, including periods of rapid growth, slow growth, and stabilisation, and the compaction degree increased by about 10%, 5%, and 1%, in that order, finally tending towards a stable value. The effect of the initial compaction temperature on the forming compaction degree of the asphalt mixture is significant; therefore, it should be controlled strictly in the compaction construction of asphalt mixtures. When the initial compaction temperature of SMA-13 is about 170 °C, the compaction effect is optimal, and the effect of the increase in the amount of compaction at a later stage on the increase in the compaction degree of the asphalt mixture is very low. With the optimal asphalt content, the friction-lubrication effect between the asphalt and aggregate particles is optimal, because it can effectively form an asphalt film, reducing the frictional resistance of the particles moving each other during the compaction process, and the voids will be embedded and filled with each other, finally producing the best compaction result.

2.
Materials (Basel) ; 17(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38730885

RESUMO

The use of warm-mix recycling technology can reduce the mixing temperature and the secondary aging of binders in reclaimed asphalt pavement (RAP), which is one of the effective ways to recycle high-content RAP. In this study, the penetration, softening point, ductility, and viscosity were used to characterize the conventional physical properties of aged asphalt after regenerating, while a dynamic shear rheometer (DSR), force ductility tester (FDT), and atomic force microscope (AFM) were used to evaluate the rheological performance and micro-morphology of aged asphalt incorporating a new bio-based warm-mix rejuvenator (BWR) and a commercial warm-mix rejuvenator (ZJ-WR). The regeneration mechanism of warm-mix rejuvenators on aged asphalt was analyzed by Fourier transform infrared spectroscopy (FTIR). The results show that the new bio-based warm-mix rejuvenator can restore the conventional physical properties, low-temperature performance, and micro-morphology of aged asphalt with an appropriate dosage, but it has a negative effect on high-temperature performance. In comparison with 2D area parameters, 3D roughness parameters were more accurate in evaluating the variation in micro-morphology of aged asphalt after regeneration. The FTIR analysis results indicate that both the new bio-based warm-mix rejuvenator and the commercial warm-mix rejuvenator regenerate aged asphalt by physical action, and AS=O and AC-H values are more reasonable than the AC=O value for the restoration evaluation of aged asphalt. And the new bio-based warm-mix rejuvenator has a better regeneration effect on the performance and micro-morphology of aged asphalt than the commercial warm-mix rejuvenator.

3.
ESC Heart Fail ; 11(4): 2138-2147, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38600875

RESUMO

AIMS: Both hypercapnia and hypocapnia are common in patients with acute heart failure (AHF), but the association between partial pressure of arterial carbon dioxide (PaCO2) and AHF prognosis remains unclear. The objective of this study was to investigate the connection between PaCO2 within 24 h after admission to the intensive care unit (ICU) and mortality during hospitalization and at 1 year in AHF patients. METHODS AND RESULTS: AHF patients were enrolled from the Medical Information Mart for Intensive Care IV database. The patients were divided into three groups by PaCO2 values of <35, 35-45, and >45 mmHg. The primary outcome was to investigate the connection between PaCO2 and in-hospital mortality and 1 year mortality in AHF patients. The secondary outcome was to assess the prediction value of PaCO2 in predicting in-hospital mortality and 1 year mortality in AHF patients. A total of 2374 patients were included in this study, including 457 patients in the PaCO2 < 35 mmHg group, 1072 patients in the PaCO2 = 35-45 mmHg group, and 845 patients in the PaCO2 > 45 mmHg group. The in-hospital mortality was 19.5%, and the 1 year mortality was 23.9% in the PaCO2 < 35 mmHg group. Multivariate logistic regression analysis showed that the PaCO2 < 35 mmHg group was associated with an increased risk of in-hospital mortality [hazard ratio (HR) 1.398, 95% confidence interval (CI) 1.039-1.882, P = 0.027] and 1 year mortality (HR 1.327, 95% CI 1.020-1.728, P = 0.035) than the PaCO2 = 35-45 mmHg group. The PaCO2 > 45 mmHg group was associated with an increased risk of in-hospital mortality (HR 1.387, 95% CI 1.050-1.832, P = 0.021); the 1 year mortality showed no significant difference (HR 1.286, 95% CI 0.995-1.662, P = 0.055) compared with the PaCO2 = 35-45 mmHg group. The Kaplan-Meier survival curves showed that the PaCO2 < 35 mmHg group had a significantly lower 1 year survival rate. The area under the receiver operating characteristic curve for predicting in-hospital mortality was 0.591 (95% CI 0.526-0.656), and the 1 year mortality was 0.566 (95% CI 0.505-0.627) in the PaCO2 < 35 mmHg group. CONCLUSIONS: In AHF patients, hypocapnia within 24 h after admission to the ICU was associated with increased in-hospital mortality and 1 year mortality. However, the increase in 1 year mortality may be influenced by hospitalization mortality. Hypercapnia was associated with increased in-hospital mortality.


Assuntos
Insuficiência Cardíaca , Mortalidade Hospitalar , Hipocapnia , Humanos , Mortalidade Hospitalar/tendências , Masculino , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/complicações , Feminino , Idoso , Hipocapnia/sangue , Hipocapnia/mortalidade , Hipocapnia/fisiopatologia , Doença Aguda , Prognóstico , Estudos Retrospectivos , Fatores de Tempo , Taxa de Sobrevida/tendências , Seguimentos , Unidades de Terapia Intensiva , Dióxido de Carbono/sangue , Pessoa de Meia-Idade , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA