Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Neurobiol Dis ; 158: 105478, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390837

RESUMO

In Parkinson's disease (PD), the second most common neurodegenerative disorder, non-motor symptoms often precede the development of debilitating motor symptoms and present a severe impact on the quality of life. Lewy bodies containing misfolded α-synuclein progressively develop in neurons throughout the peripheral and central nervous system, which may be correlated with the early development of non-motor symptoms. Among those, increased fear and anxiety is frequent in PD and thought to result from pathology outside the dopaminergic system, which has been the focus of symptomatic treatment to alleviate motor symptoms. Alpha-synuclein accumulation has been reported in the amygdala of PD patients, a brain region critically involved in fear and anxiety. Here we asked whether α-synuclein overexpression alone is sufficient to induce an enhanced fear phenotype in vivo and which pathological mechanisms are involved. Transgenic mice expressing human wild-type α-synuclein (Thy1-aSyn), a well-established model of PD, were subjected to fear conditioning followed by extinction and then tested for extinction memory retention followed by histopathological analysis. Thy1-aSyn mice showed enhanced tone fear across acquisition and extinction compared to wild-type littermates, as well as a trend to less retention of fear extinction. Immunohistochemical analysis of the basolateral nucleus of the amygdala, a nucleus critically involved in tone fear learning, revealed extensive α-synuclein pathology, with accumulation, phosphorylation, and aggregation of α-synuclein in transgenic mice. This pathology was accompanied by microgliosis and parvalbumin neuron loss in this nucleus, which could explain the enhanced fear phenotype. Importantly, this non-motor phenotype was detected in the pre-clinical phase, prior to dopamine loss in Thy1-aSyn mice, thus replicating observations in patients. Results obtained in this study suggest a possible mechanism by which increased anxiety and maladaptive fear processing may occur in PD, opening a door for therapeutic options and further early biomarker research.


Assuntos
Tonsila do Cerebelo/patologia , Medo/psicologia , Gliose/genética , Gliose/patologia , Neurônios/patologia , Doença de Parkinson/genética , Parvalbuminas , Sinucleinopatias/genética , Sinucleinopatias/patologia , Animais , Extinção Psicológica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson/patologia , Doença de Parkinson/psicologia , Fosforilação , alfa-Sinucleína/genética
2.
J Neurosci Res ; 89(7): 1091-102, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21488084

RESUMO

Overexpression or mutation of α-synuclein (α-Syn), a protein associated with presynaptic vesicles, causes familial forms of Parkinson's disease in humans and is also associated with sporadic forms of the disease. We used in vivo microdialysis, tissue content analysis, behavioral assessment, and whole-cell patch clamp recordings from striatal medium-sized spiny neurons (MSSNs) in slices to examine dopamine transmission and dopaminergic modulation of corticostriatal synaptic function in mice overexpressing human wild-type α-Syn under the Thy1 promoter (α-Syn mice). Tonic striatal extracellular dopamine and 3-methoxytyramine levels were elevated in α-Syn mice at 6 months of age, prior to any reduction in total striatal tissue content, and were accompanied by an increase in open-field activity. Dopamine clearance and amphetamine-induced dopamine efflux were unchanged. The frequency of MSSN spontaneous excitatory postsynaptic currents (sEPSCs) was lower in α-Syn mice. Amphetamine reduced sEPSC frequency in wild types (WTs) but produced no effect in α-Syn mice. Furthermore, whereas quinpirole reduced and sulpiride increased sEPSC frequency in WT mice, they produced the opposite effects in α-Syn mice. These observations indicate that overexpression of α-Syn alters dopamine efflux and D2 receptor modulation of corticostriatal glutamate release at a young age. At 14 months of age, the α-Syn mice presented with significantly lower striatal tissue dopamine and tyrosine hydroxylase content relative to WT littermates, accompanied by an L-DOPA-reversible sensory motor deficit. Together, these data further validate this transgenic mouse line as a slowly progressing model of Parkinson's disease and provide evidence for early dopamine synaptic dysfunction prior to loss of striatal dopamine.


Assuntos
Corpo Estriado/metabolismo , Dopamina/deficiência , Dopamina/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/genética , alfa-Sinucleína/genética , Vias Aferentes/metabolismo , Vias Aferentes/fisiopatologia , Animais , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Dopamina/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Receptores de Dopamina D2/genética
3.
WMJ ; 120(2): 114-119, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34255950

RESUMO

INTRODUCTION: Hepatitis B virus (HBV) infection disproportionately affects the Hmong ethnic group, with reported US prevalence rates up to 20%, but data for Wisconsin's large Hmong community is lacking. We assessed the prevalence of HBV at Hmong screening events and whether small-group counseling affects HBV knowledge. METHODS: Free HBV screening events were held in Milwaukee, Wisconsin at a Hmong market, a local church, and annual Hmong New Year festival. Eligible Hmong subjects age 18 years and older also were invited to complete a 15-point survey on HBV knowledge at baseline and after education sessions. Hmong interpreters were available, and free HBV screening was offered. RESULTS: A total of 187 participants were tested for HBV, and 161 completed surveys. After education sessions, the mean knowledge score rose to 10.6 (71%) vs the pre-education score of 6.7 (45%) (P <0.0001). Active HBV [HBsAg(+) HBsAb(-)] was diagnosed in 18 participants (9.6%), 53 (28.3%) were susceptible [HBsAg(-) and HBsAb(-)], 5 (3.4%) were in the gray zone [HBsAg(-) with low/inadequate HBsAb(+) titer], and the remaining 110 (58.8%) were immune [HBsAg(-)/HBsAb(+)]. Of the 18 individuals with active HBV, 13 were male and 5 were female [age range 24-66]. CONCLUSION: Despite evidence that small-group education with visual aids is effective in enhancing HBV knowledge in the Hmong population, a significant knowledge gap remained on post-education scores, suggesting that better tools or repeated interventions may be warranted. While we acknowledge that this convenience sampling may have introduced biases, the rate of active HBV infection in Wisconsin is much higher than general US population reports, and a quarter of those tested were found to be susceptible to HBV.


Assuntos
Anticorpos Anti-Hepatite B , Hepatite B , Adolescente , Adulto , Idoso , Feminino , Hepatite B/diagnóstico , Hepatite B/epidemiologia , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Humanos , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Adulto Jovem
4.
Neurotherapeutics ; 11(4): 840-56, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25037721

RESUMO

Mutation of the lysosomal hydrolase acid-ß-glucosidase (GCase), which leads to reduced GCase activity, is one of the most frequent genetic risk factors for Parkinson's disease (PD) and promotes α-synuclein accumulation in the brain, a hallmark of PD and other synucleinopathies. Whether targeting GCase pharmacologically is a valid therapeutic strategy for sporadic PD in the absence of GCase mutation is unknown. We have investigated whether increasing the stability, trafficking, and activity of wild-type GCase could be beneficial in synucleinopathies by administering the pharmacological chaperone AT2101 (afegostat-tartrate, isofagomine) to mice that overexpress human wild-type α-synuclein (Thy1-aSyn mice). AT2101 administered orally for 4 months to Thy1-aSyn mice improved motor and nonmotor function, abolished microglial inflammatory response in the substantia nigra, reduced α-synuclein immunoreactivity in nigral dopaminergic neurons, and reduced the number of small α-synuclein aggregates, while increasing the number of large α-synuclein aggregates. These data support the further investigation of pharmacological chaperones that target GCase as a therapeutic approach for sporadic PD and other synucleinopathies, even in the absence of glucocerebrosidase mutations.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Doença de Parkinson/enzimologia , Doença de Parkinson/prevenção & controle , alfa-Sinucleína/metabolismo , beta-Glucosidase/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Imino Piranoses/farmacologia , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Tartaratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA