RESUMO
The ecologically and economically vital symbiosis between nitrogen-fixing rhizobia and leguminous plants is often thought of as a bi-partite interaction, yet studies increasingly show the prevalence of non-rhizobial endophytes (NREs) that occupy nodules alongside rhizobia. Yet, what impact these NREs have on plant or rhizobium fitness remains unclear. Here, we investigated four NRE strains found to naturally co-occupy nodules of the legume Medicago truncatula alongside Sinorhizobium meliloti in native soils. Our objectives were to (1) examine the direct and indirect effects of NREs on M. truncatula and S. meliloti fitness, and (2) determine whether NREs can re-colonize root and nodule tissues upon reinoculation. We identified one NRE strain (522) as a novel Paenibacillus species, another strain (717A) as a novel Bacillus species, and the other two (702A and 733B) as novel Pseudomonas species. Additionally, we found that two NREs (Bacillus 717A and Pseudomonas 733B) reduced the fitness benefits obtained from symbiosis for both partners, while the other two (522, 702A) had little effect. Lastly, we found that NREs were able to co-infect host tissues alongside S. meliloti. This study demonstrates that variation of NREs present in natural populations must be considered to better understand legume-rhizobium dynamics in soil communities.
Assuntos
Medicago truncatula , Nódulos Radiculares de Plantas , Sinorhizobium meliloti , Simbiose , Medicago truncatula/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia , Microbiologia do Solo , Endófitos/fisiologia , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/classificação , Pseudomonas/genética , Pseudomonas/fisiologia , Paenibacillus/fisiologia , Paenibacillus/genética , Bacillus/fisiologia , Bacillus/genética , Bacillus/isolamento & purificação , Fixação de NitrogênioRESUMO
Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains of Sinorhizobium meliloti collected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plant Medicago truncatula. S. meliloti genomes showed high local (within-site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.
Assuntos
Medicago truncatula , Rhizobium , Genoma Bacteriano/genética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Rhizobium/genética , Análise de Sequência de DNA , Sinorhizobium meliloti/genética , Simbiose/genéticaRESUMO
The mutualism between legumes and rhizobia is clearly the product of past coevolution. However, the nature of ongoing evolution between these partners is less clear. To characterize the nature of recent coevolution between legumes and rhizobia, we used population genomic analysis to characterize selection on functionally annotated symbiosis genes as well as on symbiosis gene candidates identified through a two-species association analysis. For the association analysis, we inoculated each of 202 accessions of the legume host Medicago truncatula with a community of 88 Sinorhizobia (Ensifer) meliloti strains. Multistrain inoculation, which better reflects the ecological reality of rhizobial selection in nature than single-strain inoculation, allows strains to compete for nodulation opportunities and host resources and for hosts to preferentially form nodules and provide resources to some strains. We found extensive host by symbiont, that is, genotype-by-genotype, effects on rhizobial fitness and some annotated rhizobial genes bear signatures of recent positive selection. However, neither genes responsible for this variation nor annotated host symbiosis genes are enriched for signatures of either positive or balancing selection. This result suggests that stabilizing selection dominates selection acting on symbiotic traits and that variation in these traits is under mutation-selection balance. Consistent with the lack of positive selection acting on host genes, we found that among-host variation in growth was similar whether plants were grown with rhizobia or N-fertilizer, suggesting that the symbiosis may not be a major driver of variation in plant growth in multistrain contexts.
Assuntos
Medicago truncatula , Rhizobium , Rhizobium/genética , Simbiose/genética , Estudo de Associação Genômica Ampla , Metagenômica , Medicago truncatula/genéticaRESUMO
Given the need to predict the outcomes of (co)evolution in host-associated microbiomes, whether microbial and host fitnesses tend to trade-off, generating conflict, remains a pressing question. Examining the relationships between host and microbe fitness proxies at both the phenotypic and genomic levels can illuminate the mechanisms underlying interspecies cooperation and conflict. We examined naturally occurring genetic variation in 191 strains of the model microbial symbiont Sinorhizobium meliloti, paired with each of two host Medicago truncatula genotypes in single- or multi-strain experiments to determine how multiple proxies of microbial and host fitness were related to one another and test key predictions about mutualism evolution at the genomic scale, while also addressing the challenge of measuring microbial fitness. We found little evidence for interspecies fitness conflict; loci tended to have concordant effects on both microbe and host fitnesses, even in environments with multiple co-occurring strains. Our results emphasize the importance of quantifying microbial relative fitness for understanding microbiome evolution and thus harnessing microbiomes to improve host fitness. Additionally, we find that mutualistic coevolution between hosts and microbes acts to maintain, rather than erode, genetic diversity, potentially explaining why variation in mutualism traits persists in nature.
Assuntos
Medicago truncatula , Sinorhizobium meliloti , Variação Genética , Genômica , Medicago truncatula/genética , Sinorhizobium meliloti/genética , Simbiose/genéticaRESUMO
Because genotypes within a species commonly differ in traits that influence other species, whole communities, or even ecosystem functions, evolutionary change within one key species may affect the community and ecosystem processes. Here we use experimental mesocosms to test how the evolution of reduced cooperation in rhizobium mutualists in response to 20 years of nitrogen fertilization compares to the effects of rhizobium presence on soil nitrogen availability and plant community composition and diversity. The evolution of reduced rhizobium cooperation caused reductions in soil nitrogen, biological nitrogen fixation, and leaf nitrogen concentrations that were as strong as, or even stronger than, experimental rhizobium inoculation (presence/absence) treatments. Effects of both rhizobium evolution and rhizobium inoculation on legume dominance, plant community composition, and plant species diversity were often smaller in magnitude, but suggest that rhizobium evolution can alter the relative abundance of plant functional groups. Our findings indicate that the consequences of rapid microbial evolution for ecosystems and communities can rival the effects resulting from the presence or abundance of keystone mutualists.
Assuntos
Fabaceae , Rhizobium , Ecossistema , Fabaceae/fisiologia , Nitrogênio , Plantas , Rhizobium/fisiologia , Solo , Simbiose/fisiologiaRESUMO
Free-air CO2 enrichment (FACE) experiments have elucidated how climate change affects plant physiology and production. However, we lack a predictive understanding of how climate change alters interactions between plants and endophytes, critical microbial mediators of plant physiology and ecology. We leveraged the SoyFACE facility to examine how elevated [CO2 ] affected soybean (Glycine max) leaf endophyte communities in the field. Endophyte community composition changed under elevated [CO2 ], including a decrease in the abundance of a common endophyte, Methylobacterium sp. Moreover, Methylobacterium abundance was negatively correlated with co-occurring fungal endophytes. We then assessed how Methylobacterium affected the growth of co-occurring endophytic fungi in vitro. Methylobacterium antagonized most co-occurring fungal endophytes in vitro, particularly when it was more established in culture before fungal introduction. Variation in fungal response to Methylobacterium within a single fungal operational taxonomic unit (OTU) was comparable to inter-OTU variation. Finally, fungi isolated from elevated vs. ambient [CO2 ] plots differed in colony growth and response to Methylobacterium, suggesting that increasing [CO2 ] may affect fungal traits and interactions within the microbiome. By combining in situ and in vitro studies, we show that elevated [CO2 ] decreases the abundance of a common bacterial endophyte that interacts strongly with co-occurring fungal endophytes. We suggest that endophyte responses to global climate change will have important but largely unexplored implications for both agricultural and natural systems.
Assuntos
Dióxido de Carbono , Endófitos , Fungos , Folhas de Planta , Glycine maxRESUMO
PREMISE: Nutrients, light, water, and temperature are key factors limiting the growth of individual plants in nature. Mutualistic interactions between plants and microbes often mediate resource limitation for both partners. In the mutualism between legumes and rhizobia, plants provide rhizobia with carbon in exchange for fixed nitrogen. Because partner quality in mutualisms is genotype-dependent, within-species genetic variation is expected to alter the responses of mutualists to changes in the resource environment. Here we ask whether partner quality variation in rhizobia mediates the response of host plants to changing light availability, and conversely, whether light alters the expression of partner quality variation. METHODS: We inoculated clover hosts with 11 strains of Rhizobium leguminosarum that differed in partner quality, grew plants under either ambient or low light conditions in the greenhouse, and measured plant growth, nodule traits, and foliar nutrient composition. RESULTS: Light availability and rhizobium inoculum interactively determined plant growth, and variation in rhizobium partner quality was more apparent in ambient light. CONCLUSIONS: Our results suggest that variation in the costs and benefits of rhizobium symbionts mediate host responses to light availability and that rhizobium strain variation might more important in higher-light environments. Our work adds to a growing appreciation for the role of microbial intraspecific and interspecific diversity in mediating extended phenotypes in their hosts and suggests an important role for light availability in the ecology and evolution of legume-rhizobium symbiosis.
Assuntos
Fabaceae , Rhizobium , Genótipo , Fixação de Nitrogênio , SimbioseRESUMO
Anthropogenic changes can influence mutualism evolution; however, the genomic regions underpinning mutualism that are most affected by environmental change are generally unknown, even in well-studied model mutualisms like the interaction between legumes and their nitrogen (N)-fixing rhizobia. Such genomic information can shed light on the agents and targets of selection maintaining cooperation in nature. We recently demonstrated that N-fertilization has caused an evolutionary decline in mutualistic partner quality in the rhizobia that form symbiosis with clover. Here, population genomic analyses of N-fertilized versus control rhizobium populations indicate that evolutionary differentiation at a key symbiosis gene region on the symbiotic plasmid (pSym) contributes to partner quality decline. Moreover, patterns of genetic variation at selected loci were consistent with recent positive selection within N-fertilized environments, suggesting that N-rich environments might select for less beneficial rhizobia. By studying the molecular population genomics of a natural bacterial population within a long-term ecological field experiment, we find that: (i) the N environment is indeed a potent selective force mediating mutualism evolution in this symbiosis, (ii) natural variation in rhizobium partner quality is mediated in part by key symbiosis genes on the symbiotic plasmid, and (iii) differentiation at selected genes occurred in the context of otherwise recombining genomes, resembling eukaryotic models of adaptation.
Assuntos
Evolução Biológica , Genoma Bacteriano , Nitrogênio/metabolismo , Rhizobium leguminosarum/fisiologia , Simbiose , Rhizobium leguminosarum/genética , Trifolium/microbiologiaRESUMO
PREMISE OF THE STUDY: Resource mutualisms such as the symbiosis between legumes and nitrogen-fixing rhizobia are context dependent and are sensitive to various aspects of the environment, including nitrogen (N) addition. Mutualist hosts such as legumes are also thought to use mechanisms such as partner choice to discriminate among potential symbionts that vary in partner quality (fitness benefits conferred to hosts) and thus impose selection on rhizobium populations. Together, context dependency and partner choice might help explain why the legume-rhizobium mutualism responds evolutionarily to N addition, since plant-mediated selection that shifts in response to N might be expected to favor different rhizobium strains in different N environments. METHODS: We test for the influence of context dependency on partner choice in the model legume, Medicago truncatula, using a factorial experiments with three plant families across three N levels with a mixed inoculation of three rhizobia strains. KEY RESULTS: Neither the relative frequencies of rhizobium strains occupying host nodules, nor the size of those nodules, differed in response to N level. CONCLUSIONS: Despite the lack of context dependence, plant genotypes respond very differently to mixed populations of rhizobia, suggesting that these traits are genetically variable and thus could evolve in response to longer-term increases in N.
Assuntos
Medicago truncatula/fisiologia , Fixação de Nitrogênio , Nodulação , Sinorhizobium/fisiologia , Simbiose , Genótipo , Medicago truncatula/genética , Medicago truncatula/microbiologia , Sinorhizobium/genéticaRESUMO
Cheating is a focal concept in the study of mutualism, with the majority of researchers considering cheating to be both prevalent and highly damaging. However, current definitions of cheating do not reliably capture the evolutionary threat that has been a central motivation for the study of cheating. We describe the development of the cheating concept and distill a relative-fitness-based definition of cheating that encapsulates the evolutionary threat posed by cheating, i.e. that cheaters will spread and erode the benefits of mutualism. We then describe experiments required to conclude that cheating is occurring and to quantify fitness conflict more generally. Next, we discuss how our definition and methods can generate comparability and integration of theory and experiments, which are currently divided by their respective prioritisations of fitness consequences and traits. To evaluate the current empirical evidence for cheating, we review the literature on several of the best-studied mutualisms. We find that although there are numerous observations of low-quality partners, there is currently very little support from fitness data that any of these meet our criteria to be considered cheaters. Finally, we highlight future directions for research on conflict in mutualisms, including novel research avenues opened by a relative-fitness-based definition of cheating.
RESUMO
This study tested the hypothesis that inoculation of soybean (Glycine maxâ Merr.) with a Bradyrhizobium japonicum strain (USDA110) with greater N2 fixation rates would enhance soybean response to elevated [CO2 ]. In field experiments at the Soybean Free Air CO2 Enrichment facility, inoculation of soybean with USDA110 increased nodule occupancy from 5% in native soil to 54% in elevated [CO2 ] and 34% at ambient [CO2 ]. Despite this success, inoculation with USDA110 did not result in greater photosynthesis, growth or seed yield at ambient or elevated [CO2 ] in the field, presumably due to competition from native rhizobia. In a growth chamber experiment designed to study the effects of inoculation in the absence of competition, inoculation with USDA110 in sterilized soil resulted in nodule occupation of >90%, significantly greater (15) N2 fixation, photosynthetic capacity, leaf N and total plant biomass compared with plants grown with native soil bacteria. However, there was no interaction of rhizobium fertilization with elevated [CO2 ]; inoculation with USDA110 was equally beneficial at ambient and elevated [CO2 ]. These results suggest that selected rhizobia could potentially stimulate soybean yield in soils with little or no history of prior soybean production, but that better quality rhizobia do not enhance soybean responses to elevated [CO2 ].
Assuntos
Bradyrhizobium/fisiologia , Dióxido de Carbono/farmacologia , Glycine max/microbiologia , Biomassa , Fixação de Nitrogênio , Fotossíntese/fisiologia , Microbiologia do Solo , Glycine max/efeitos dos fármacos , Glycine max/fisiologia , SimbioseRESUMO
UNLABELLED: ⢠PREMISE OF THE STUDY: Multiple mutualist effects (MMEs) are common in nature, yet we lack a predictive understanding of how two mutualists on the same host will influence each other and whether these effects will be positive or negative. Leguminous plants maintain root symbioses with two nutritional mutualists: rhizobia that fix atmospheric nitrogen and arbuscular mycorrhizal fungi (AMF) that increase phosphorus uptake. Both symbionts receive plant carbon, and host genetic networks that regulate colonization are partially shared by both symbioses; whether these factors generate trade-offs or facilitation between rhizobial and AMF symbionts of legumes is not well known.⢠METHODS: We evaluated host allocation to each symbiont in three settings. First, in situ in a remnant prairie, then in a greenhouse experiment with multiple plant populations, and finally under manipulated rhizobium densities in the greenhouse.⢠KEY RESULTS: In the remnant prairie, rhizobium nodule number and colonization of AMF were positively correlated, and plants with increased nodule number had higher fitness in the field, generating indirect selection on the colonization of AMF. In the greenhouse experiment, allocation to each symbiont was genetically variable among populations, with some suggestion that rhizobium and AMF colonization are positively genetically correlated. Finally, increasing the number of rhizobia in the soil decreased AMF colonization.⢠CONCLUSIONS: Our results suggest that trade-offs between plant colonization by rhizobia and AMF are context dependent and might not be common under field conditions, but that physiological and/or genetic drivers couple these two symbioses in nature.
Assuntos
Bradyrhizobium/fisiologia , Fabaceae/microbiologia , Fabaceae/fisiologia , Microbiologia do Solo , Simbiose , Fabaceae/embriologia , Fabaceae/crescimento & desenvolvimento , Variação Genética , Illinois , Micorrizas/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Seleção GenéticaRESUMO
Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial-interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia - fossil records, species distribution models and phylogeographic surveys - in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.
Assuntos
Fósseis , Modelos Teóricos , Filogeografia , Plantas , Clima , Fagus/fisiologia , Camada de Gelo , Picea/fisiologia , Pseudotsuga/fisiologiaRESUMO
Introduction: Drought is one of the biggest problems for crop production and also affects the survival and persistence of soil rhizobia, which limits the establishment of efficient symbiosis and endangers the productivity of legumes, the main source of plant protein worldwide. Aim: Since the biodiversity can be altered by several factors including abiotic stresses or cultural practices, the objective of this research was to evaluate the effect of water availability, plant genotype and agricultural management on the presence, nodulation capacity and genotypic diversity of rhizobia. Method: A field experiment was conducted with twelve common bean genotypes under irrigation and rain-fed conditions, both in conventional and organic management. Estimation of the number of viable rhizobia present in soils was performed before the crop establishment, whereas the crop yield, nodule number and the strain diversity of bacteria present in nodules were determined at postharvest. Results: Rainfed conditions reduced the number of nodules and of isolated bacteria and their genetic diversity, although to a lesser extent than the agrochemical inputs related to conventional management. In addition, the effect of water scarcity on the conventional management soil was greater than observed under organic conditions. Conclusions: The preservation of diversity will be a key factor to maintain crop production in the future, as problems caused by drought will be exacerbated by climate change and organic management can help to maintain the biodiversity of soil microbiota, a fundamental aspect for soil health and quality.
RESUMO
Coevolutionary change requires reciprocal selection between interacting species, where the partner genotypes that are favoured in one species depend on the genetic composition of the interacting species. Coevolutionary genetic variation is manifested as genotype × genotype (G × G) interactions for fitness in interspecific interactions. Although quantitative genetic approaches have revealed abundant evidence for G × G interactions in symbioses, the molecular basis of this variation remains unclear. Here we study the molecular basis of G × G interactions in a model legume-rhizobium mutualism using gene expression microarrays. We find that, like quantitative traits such as fitness, variation in the symbiotic transcriptome may be partitioned into additive and interactive genetic components. Our results suggest that plant genetic variation had the largest influence on nodule gene expression and that plant genotype and the plant genotype × rhizobium genotype interaction determine global shifts in rhizobium gene expression that in turn feedback to influence plant fitness benefits. Moreover, the transcriptomic variation we uncover implicates regulatory changes in both species as drivers of symbiotic gene expression variation. Our study is the first to partition genetic variation in a symbiotic transcriptome and illuminates potential molecular routes of coevolutionary change.
Assuntos
Evolução Biológica , Variação Genética , Medicago truncatula/genética , Sinorhizobium meliloti/genética , Simbiose/genética , Transcriptoma , Biblioteca Gênica , Genótipo , Medicago truncatula/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Plasmídeos/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologiaRESUMO
Due to their non-motile nature, plants rely heavily on mutualistic interactions to obtain resources and carry out services. One key mutualism is the plant-microbial mutualism in which a plant trades away carbon to a microbial partner for nutrients like nitrogen and phosphorous. Plants show much variation in the use of this partnership from the individual level to entire lineages depending upon ecological, evolutionary and environmental context. We sought to determine how this context dependency could result in the promotion, exclusion or coexistence of the microbial mutualism by asking if and when the partnership provided a competitive advantage to the plant. To that end, we created a 2 × 2 evolutionary game in which plants could either be a mutualist and pair with a microbe or be a non-mutualist and forgo the partnership. Our model includes both frequency dependence and density dependence, which gives us the eco-evolutionary dynamics of mutualism evolution. As in all models, mutualism only evolved if it could offer a competitive advantage and its net benefit was positive. However, surprisingly the model reveals the possibility of coexistence between mutualist and non-mutualist genotypes due to competition between mutualists over the microbially obtained nutrient. Specifically, frequency dependence of host strategies can make the microbial symbiont less beneficial if the microbially derived resources are shared, a phenomenon that increasingly reduces the frequency of mutualism as the density of competitors increases. In essence, ecological competition can act as a hindrance to mutualism evolution. We go on to discuss basic experiments that can be done to test and falsify our hypotheses.
RESUMO
Despite decades of research, we are only just beginning to understand the forces maintaining variation in the nitrogen-fixing symbiosis between rhizobial bacteria and leguminous plants. In their recent work, Alexandra Weisberg and colleagues use genomics to document the breadth of mobile element diversity that carries the symbiosis genes of Bradyrhizobium in natural populations. Studying rhizobia from the perspective of their mobile genetic elements, which have their own transmission modes and fitness interests, reveals novel mechanisms for the generation and maintenance of diversity in natural populations of these ecologically and economically important mutualisms.
Assuntos
Bradyrhizobium , Fabaceae , Rhizobium , Bradyrhizobium/genética , Fabaceae/microbiologia , Fixação de Nitrogênio , Rhizobium/genética , Simbiose , VerdurasRESUMO
Wood decomposition in water is a key ecosystem process driven by diverse microbial taxa that likely differ in their affinities for freshwater, estuarine and marine habitats. How these decomposer communities assemble in situ or potentially colonize from other habitats remains poorly understood. At three watersheds on Coiba Island, Panama, we placed replicate sections of branch wood of a single tree species on land, and in freshwater, estuarine and marine habitats that constitute a downstream salinity gradient. We sequenced archaea, bacteria and fungi from wood samples collected after 3, 9 and 15 months to examine microbial community composition, and to examine habitat specificity and abundance patterns. We found that these microbial communities were broadly structured by similar factors, with a strong effect of salinity, but little effect of watershed identity on compositional variation. Moreover, common aquatic taxa were also present in wood incubated on land. Our results suggest that either taxa dispersed to both terrestrial and aquatic habitats, or microbes with broad habitat ranges were initially present in the wood as endophytes. Nonetheless, these habitat generalists varied greatly in abundance across habitats suggesting an important role for habitat filtering in maintaining distinct aquatic communities in freshwater, estuarine and marine habitats.