Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104792, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150321

RESUMO

Necroptosis is a form of regulated cell death triggered by various host and pathogen-derived molecules during infection and inflammation. The essential step leading to necroptosis is phosphorylation of the mixed lineage kinase domain-like protein by receptor-interacting protein kinase 3. Caspase-8 cleaves receptor-interacting protein kinases to block necroptosis, so synthetic caspase inhibitors are required to study this process in experimental models. However, it is unclear how caspase-8 activity is regulated in a physiological setting. The active site cysteine of caspases is sensitive to oxidative inactivation, so we hypothesized that oxidants generated at sites of inflammation can inhibit caspase-8 and promote necroptosis. Here, we discovered that hypothiocyanous acid (HOSCN), an oxidant generated in vivo by heme peroxidases including myeloperoxidase and lactoperoxidase, is a potent caspase-8 inhibitor. We found HOSCN was able to promote necroptosis in mouse fibroblasts treated with tumor necrosis factor. We also demonstrate purified caspase-8 was inactivated by low concentrations of HOSCN, with the predominant product being a disulfide-linked dimer between Cys360 and Cys409 of the large and small catalytic subunits. We show oxidation still occurred in the presence of reducing agents, and reduction of the dimer was slow, consistent with HOSCN being a powerful physiological caspase inhibitor. While the initial oxidation product is a dimer, further modification also occurred in cells treated with HOSCN, leading to higher molecular weight caspase-8 species. Taken together, these findings indicate major disruption of caspase-8 function and suggest a novel mechanism for the promotion of necroptosis at sites of inflammation.


Assuntos
Caspase 8 , Necroptose , Oxidantes , Fatores de Necrose Tumoral , Animais , Camundongos , Caspase 8/química , Caspase 8/metabolismo , Inflamação/metabolismo , Necroptose/efeitos dos fármacos , Oxidantes/metabolismo , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Fatores de Necrose Tumoral/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Peroxidase , Lactoperoxidase , Domínio Catalítico
2.
J Biol Chem ; 296: 100494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667550

RESUMO

Peroxiredoxin 2 (Prdx2) is a thiol peroxidase with an active site Cys (C52) that reacts rapidly with H2O2 and other peroxides. The sulfenic acid product condenses with the resolving Cys (C172) to form a disulfide which is recycled by thioredoxin or GSH via mixed disulfide intermediates or undergoes hyperoxidation to the sulfinic acid. C172 lies near the C terminus, outside the active site. It is not established whether structural changes in this region, such as mixed disulfide formation, affect H2O2 reactivity. To investigate, we designed mutants to cause minimal (C172S) or substantial (C172D and C172W) structural disruption. Stopped flow kinetics and mass spectrometry showed that mutation to Ser had minimal effect on rates of oxidation and hyperoxidation, whereas Asp and Trp decreased both by ∼100-fold. To relate to structural changes, we solved the crystal structures of reduced WT and C172S Prdx2. The WT structure is highly similar to that of the published hyperoxidized form. C172S is closely related but more flexible and as demonstrated by size exclusion chromatography and analytical ultracentrifugation, a weaker decamer. Size exclusion chromatography and analytical ultracentrifugation showed that the C172D and C172W mutants are also weaker decamers than WT, and small-angle X-ray scattering analysis indicated greater flexibility with partially unstructured regions consistent with C-terminal unfolding. We propose that these structural changes around C172 negatively impact the active site geometry to decrease reactivity with H2O2. This is relevant for Prdx turnover as intermediate mixed disulfides with C172 would also be disruptive and could potentially react with peroxides before resolution is complete.


Assuntos
Cisteína/química , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Humanos , Peróxido de Hidrogênio/química , Mutação , Oxidantes/química , Oxidantes/metabolismo , Oxirredução , Relação Estrutura-Atividade
3.
Biochem J ; 478(17): 3319-3330, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34424335

RESUMO

Angiotensinogen fine-tunes the tightly controlled activity of the renin-angiotensin system by modulating the release of angiotensin peptides that control blood pressure. One mechanism by which this modulation is achieved is via angiotensinogen's Cys18-Cys138 disulfide bond that acts as a redox switch. Molecular dynamics simulations of each redox state of angiotensinogen reveal subtle dynamic differences between the reduced and oxidised forms, particularly at the N-terminus. Surface plasmon resonance data demonstrate that the two redox forms of angiotensinogen display different binding kinetics to an immobilised anti-angiotensinogen monoclonal antibody. Mass spectrometry mapped the epitope for the antibody to the N-terminal region of angiotensinogen. We therefore provide evidence that the different redox forms of angiotensinogen can be detected by an antibody-based detection method.


Assuntos
Angiotensinogênio/química , Angiotensinogênio/metabolismo , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície/métodos , Angiotensinogênio/genética , Angiotensinogênio/imunologia , Anticorpos Monoclonais/imunologia , Pressão Sanguínea/fisiologia , Cisteína/metabolismo , Dissulfetos/metabolismo , Epitopos/imunologia , Humanos , Cinética , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sistema Renina-Angiotensina/fisiologia
4.
Nat Commun ; 15(1): 5535, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951545

RESUMO

The conversion of a soluble protein into polymeric amyloid structures is a process that is poorly understood. Here, we describe a fully redox-regulated amyloid system in which cysteine oxidation of the tumor suppressor protein p16INK4a leads to rapid amyloid formation. We identify a partially-structured disulfide-bonded dimeric intermediate species that subsequently assembles into fibrils. The stable amyloid structures disassemble when the disulfide bond is reduced. p16INK4a is frequently mutated in cancers and is considered highly vulnerable to single-point mutations. We find that multiple cancer-related mutations show increased amyloid formation propensity whereas mutations stabilizing the fold prevent transition into amyloid. The complex transition into amyloids and their structural stability is therefore strictly governed by redox reactions and a single regulatory disulfide bond.


Assuntos
Amiloide , Inibidor p16 de Quinase Dependente de Ciclina , Cisteína , Oxirredução , Amiloide/metabolismo , Amiloide/química , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Cisteína/metabolismo , Cisteína/química , Dissulfetos/metabolismo , Dissulfetos/química , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/química , Mutação , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA