Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Epidemiology ; 28(3): 320-328, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28151741

RESUMO

BACKGROUND: We hypothesize that biological perturbations due to exposure to ambient air pollution are reflected in gene expression levels in peripheral blood mononuclear cells. METHODS: We assessed the association between exposure to ambient air pollution and genome-wide gene expression levels in peripheral blood mononuclear cells collected from 550 healthy subjects participating in cohorts from Italy and Sweden. Annual air pollution estimates of nitrogen oxides (NOx) at time of blood collection (1990-2006) were available from the ESCAPE study. In addition to univariate analysis and two variable selection methods to investigate the association between expression and exposure to NOx, we applied gene set enrichment analysis to assess overlap between our most perturbed genes and gene sets hypothesized to be related to air pollution and cigarette smoking. Finally, we assessed associations between NOx and CpG island methylation at the identified genes. RESULTS: Annual average NOx exposure in the Italian and Swedish cohorts was 94.2 and 6.7 µg/m, respectively. Long-term exposure to NOx was associated with seven probes in the Italian cohort and one probe in the Swedish (and combined) cohorts. For genes AHCYL2 and MTMR2, changes were also seen in the methylome. Genes hypothesized to be downregulated due to cigarette smoking were enriched among the most strongly downregulated genes from our study. CONCLUSION: This study provides evidence of subtle changes in gene expression related to exposure to long-term NOx. On a global level, the observed changes in the transcriptome may indicate similarities between air pollution and tobacco induced changes in the transcriptome.


Assuntos
Poluição do Ar/estatística & dados numéricos , Metilação de DNA , Expressão Gênica , Óxidos de Nitrogênio , Adulto , Poluentes Atmosféricos , Neoplasias da Mama/epidemiologia , Estudos de Coortes , Ilhas de CpG , Feminino , Voluntários Saudáveis , Humanos , Inflamação , Interleucina-10/imunologia , Interleucina-2/imunologia , Interleucina-8/imunologia , Itália/epidemiologia , Linfoma/epidemiologia , Masculino , Pessoa de Meia-Idade , Fumar/epidemiologia , Fumar/genética , Fumar/imunologia , Suécia/epidemiologia , Fator de Necrose Tumoral alfa/imunologia
2.
Bioinformatics ; 31(9): 1505-7, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25505093

RESUMO

MOTIVATION: The field of toxicogenomics (the application of '-omics' technologies to risk assessment of compound toxicities) has expanded in the last decade, partly driven by new legislation, aimed at reducing animal testing in chemical risk assessment but mainly as a result of a paradigm change in toxicology towards the use and integration of genome wide data. Many research groups worldwide have generated large amounts of such toxicogenomics data. However, there is no centralized repository for archiving and making these data and associated tools for their analysis easily available. RESULTS: The Data Infrastructure for Chemical Safety Assessment (diXa) is a robust and sustainable infrastructure storing toxicogenomics data. A central data warehouse is connected to a portal with links to chemical information and molecular and phenotype data. diXa is publicly available through a user-friendly web interface. New data can be readily deposited into diXa using guidelines and templates available online. Analysis descriptions and tools for interrogating the data are available via the diXa portal. AVAILABILITY AND IMPLEMENTATION: http://www.dixa-fp7.eu CONTACT: d.hendrickx@maastrichtuniversity.nl; info@dixa-fp7.eu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados de Compostos Químicos , Toxicogenética , Animais , Perfilação da Expressão Gênica , Humanos , Metabolômica , Proteômica , Ratos
3.
Mutagenesis ; 26(6): 753-61, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21724973

RESUMO

N-nitroso compounds (NOCs) are suspected human carcinogens and relevant in human exposure. NOCs also induce micronuclei (MN) formation in vivo. Since lymphocytic MN represent a validated biomarker of human cancer risk, establishing a link between NOC exposure and MN frequency in humans and concurrently investigating associated transcriptomic responses may provide crucial information on underlying molecular mechanisms that predispose to carcinogenicity. We used lymphocytes, from adult females participating in the pan-European biomarker research project NewGeneris, as a surrogate tissue for analysing such potentially carcinogenic gene expression and MN formation events in target organs. To assess NOC exposure, urine samples were analysed for marker nitrosamines. NOC excretion levels and MN frequency were subsequently linked to peripheral blood transcriptomics. We demonstrated a significant association between MN frequency and urinary NOCs (r = 0.41, P = 0.025) and identified modifications in among others cytoskeleton remodeling, cell cycle, apoptosis and survival, signal transduction, immune response, G-protein signaling and development pathways, which indicate a response to NOC-induced genotoxicity. Moreover, we established a network of genes, the most important ones of which include FBXW7, BUB3, Caspase 2, Caspase 8, SMAD3, Huntingtin and MGMT, which are involved in processes relevant in carcinogenesis. The modified genetic processes and genes found in this study may be of interest for future investigations into the potential carcinogenic risk associated with NOC exposure in humans.


Assuntos
Células Sanguíneas/metabolismo , Exposição Ambiental/análise , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma Humano/genética , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Nitrosaminas/efeitos adversos , Adulto , Feminino , Redes Reguladoras de Genes/genética , Humanos , Testes para Micronúcleos , Nitrosaminas/urina , Transdução de Sinais/genética
4.
Biomaterials ; 259: 120331, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32836056

RESUMO

We previously found that surface topographies induce the expression of the Scxa gene, encoding Scleraxis in tenocytes. Because Scxa is a TGF-ß responsive gene, we investigated the link between mechanotransduction and TGF-ß signaling. We discovered that mesenchymal stem cells exposed to both micro-topographies and TGF-ß2 display synergistic induction of SMAD phosphorylation and transcription of the TGF-ß target genes SCX, a-SMA, and SOX9. Pharmacological perturbations revealed that Rho/ROCK/SRF signaling is required for this synergistic response. We further found an activation of the early response genes SRF and EGR1 during the early adaptation phase on micro-topographies, which coincided with higher expression of the TGF-ß type-II receptor gene. Of interest, PKC activators Prostratin and Ingenol-3, known for inducing actin reorganization and activation of serum response elements, were able to mimic the topography-induced TGF-ß response. These findings provide novel insights into the convergence of mechanobiology and TGF-ß signaling, which can lead to improved culture protocols and therapeutic applications.


Assuntos
Células-Tronco Mesenquimais , Actinas/metabolismo , Células Cultivadas , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Fosforilação , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
5.
Sci Rep ; 10(1): 18988, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149200

RESUMO

Learning rules by which cell shape impacts cell function would enable control of cell physiology and fate in medical applications, particularly, on the interface of cells and material of the implants. We defined the phenotypic response of human bone marrow-derived mesenchymal stem cells (hMSCs) to 2176 randomly generated surface topographies by probing basic functions such as migration, proliferation, protein synthesis, apoptosis, and differentiation using quantitative image analysis. Clustering the surfaces into 28 archetypical cell shapes, we found a very strict correlation between cell shape and physiological response and selected seven cell shapes to describe the molecular mechanism leading to phenotypic diversity. Transcriptomics analysis revealed a tight link between cell shape, molecular signatures, and phenotype. For instance, proliferation is strongly reduced in cells with limited spreading, resulting in down-regulation of genes involved in the G2/M cycle and subsequent quiescence, whereas cells with large filopodia are related to activation of early response genes and inhibition of the osteogenic process. In this paper we were aiming to identify a universal set of genes that regulate the material-induced phenotypical response of human mesenchymal stem cells. This will allow designing implants that can actively regulate cellular, molecular signalling through cell shape. Here we are proposing an approach to tackle this question.


Assuntos
Técnicas de Cultura de Células/instrumentação , Perfilação da Expressão Gênica/métodos , Células-Tronco Mesenquimais/citologia , Adipogenia , Diferenciação Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Análise de Sequência de RNA , Transdução de Sinais , Propriedades de Superfície
6.
Sci Rep ; 9(1): 746, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679748

RESUMO

PCBs are classified as xenoestrogens and carcinogens and their health risks may be sex-specific. To identify potential sex-specific responses to PCB-exposure we established gene expression profiles in a population study subdivided into females and males. Gene expression profiles were determined in a study population consisting of 512 subjects from the EnviroGenomarkers project, 217 subjects who developed lymphoma and 295 controls were selected in later life. We ran linear mixed models in order to find associations between gene expression and exposure to PCBs, while correcting for confounders, in particular distribution of white blood cells (WBC), as well as random effects. The analysis was subdivided according to sex and development of lymphoma in later life. The changes in gene expression as a result of exposure to the six studied PCB congeners were sex- and WBC type specific. The relatively large number of genes that are significantly associated with PCB-exposure in the female subpopulation already indicates different biological response mechanisms to PCBs between the two sexes. The interaction analysis between different PCBs and WBCs provides only a small overlap between sexes. In males, cancer-related pathways and in females immune system-related pathways are identified in association with PCBs and WBCs. Future lymphoma cases and controls for both sexes show different responses to the interaction of PCBs with WBCs, suggesting a role of the immune system in PCB-related cancer development.


Assuntos
Carcinógenos/toxicidade , Poluentes Ambientais/toxicidade , Neoplasias/genética , Bifenilos Policlorados/toxicidade , Transcriptoma/efeitos dos fármacos , Monitoramento Ambiental , Feminino , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/patologia , Leucócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Neoplasias/induzido quimicamente , Caracteres Sexuais , Transcriptoma/genética , Xenobióticos/toxicidade
7.
Sci Rep ; 9(1): 9099, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235713

RESUMO

Human mesenchymal stem (hMSCs) are defined as multi-potent colony-forming cells expressing a specific subset of plasma membrane markers when grown on flat tissue culture polystyrene. However, as soon as hMSCs are used for transplantation, they are exposed to a 3D environment, which can strongly impact cell physiology and influence proliferation, differentiation and metabolism. Strategies to control in vivo hMSC behavior, for instance in stem cell transplantation or cancer treatment, are skewed by the un-physiological flatness of the standard well plates. Even though it is common knowledge that cells behave differently in vitro compared to in vivo, only little is known about the underlying adaptation processes. Here, we used micrometer-scale defined surface topographies as a model to describe the phenotype of hMSCs during this adaptation to their new environment. We used well established techniques to compare hMSCs cultured on flat and topographically enhanced polystyreneand observed dramatically changed cell morphologies accompanied by shrinkage of cytoplasm and nucleus, a decreased overall cellular metabolism, and slower cell cycle progression resulting in a lower proliferation rate in cells exposed to surface topographies. We hypothesized that this reduction in proliferation rate effects their sensitivity to certain cancer drugs, which was confirmed by higher survival rate of hMSCs cultured on topographies exposed to paclitaxel. Thus, micro-topographies can be used as a model system to mimic the natural cell micro-environment, and be a powerful tool to optimize cell treatment in vitro.


Assuntos
Adaptação Fisiológica , Células-Tronco Mesenquimais/citologia , Idoso , Ciclo Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Paclitaxel/farmacologia , Fenótipo , Propriedades de Superfície
8.
Carcinogenesis ; 28(12): 2632-40, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17690111

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) cover a wide range of structurally related compounds which differ greatly in their carcinogenic potency. PAH exposure usually occurs through mixtures rather than individual compounds. Therefore, we assessed whether the effects of binary PAH mixtures on gene expression, DNA adduct formation, apoptosis and cell cycle are additive compared with the effects of the individual compounds in human hepatoma cells (HepG2). Equimolar and equitoxic mixtures of benzo[a]pyrene (B[a]P) with either dibenzo[a,l]pyrene (DB[a,l]P), dibenzo[a,h]anthracene (DB[a,h]A), benzo[b]fluoranthene (B[b]F), fluoranthene (FA) or 1-methylphenanthrene (1-MPA) were studied. DB[a,l]P, B[a]P, DB[a,h]A and B[b]F dose-dependently increased apoptosis and blocked cells cycle in S-phase. PAH mixtures showed an additive effect on apoptosis and on cell cycle blockage. DNA adduct formation in mixtures was higher than expected based on the individual compounds, indicating a synergistic effect of PAH mixtures. Equimolar mixtures of B[a]P and DB[a,l]P (0.1, 0.3 and 1.0 microM) were assessed for their effects on gene expression. Only at 1.0 microM, the mixture showed antagonism. All five compounds were also tested as a binary mixture with B[a]P in equitoxic concentrations. The combinations of B[a]P with B[b]F, DB[a,h]A or FA showed additivity, whereas B[a]P with DB[a,l]P or 1-MPA showed antagonism. Many individual genes showed additivity in mixtures, but some genes showed mostly antagonism or synergism. Our results show that the effects of binary mixtures of PAHs on gene expression are generally additive or slightly antagonistic, suggesting no effect or decreased carcinogenic potency, whereas the effects on DNA adduct formation show synergism, which rather indicates increased carcinogenic potency.


Assuntos
Poluentes Atmosféricos/toxicidade , Adutos de DNA/biossíntese , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Antagonismo de Drogas , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos
9.
Biomaterials ; 149: 88-97, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29020642

RESUMO

Creating biomaterials that are suited for clinical application is still hampered by a lack of understanding of the interaction between a cell and the biomaterial surface it grows on. This surface communication can strongly impact cellular behavior, which in turn affects the chances of a successful interaction between a material and the host tissue. Transcriptomics data have previously been linked to measurements of biomaterial properties in order to explain the biological mechanisms underlying these cell-biomaterial interactions. However, such multi-assay data are highly complex and therefore require careful and unambiguous characterization and storage. Failure to do so may result in loss of valuable data or erroneous data analysis. In order to start a new initiative that tackles these issues and offers a platform for innovative biomaterial development, we have created a publically accessible repository called The Compendium for Biomaterial Transcriptomics (cBiT, https://cbit.maastrichtuniversity.nl). cBiT is a data warehouse that gives users the opportunity to search through biomaterial-based transcriptomics data sets using a web interface. Data of interest can be selected and downloaded, together with associated measurements of material properties. Researchers are also invited to add their data to cBiT in order to further enhance its scientific value. We aim to make cBiT the hub for biomaterial-associated data, thereby enabling major contributions to a more efficient development of new materials with improved body integration. Here, we describe the structure of cBiT and provide a use case with clinically applied materials to demonstrate how cBiT can be used to correlate data across transcriptomics studies.


Assuntos
Materiais Biocompatíveis , Bases de Dados Genéticas , Transcriptoma , Humanos
10.
Adv Mater ; 29(10)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27991696

RESUMO

New engineering possibilities allow biomaterials to serve as active orchestrators of the molecular and cellular events of tissue regeneration. Here, the molecular control of tissue regeneration for calcium phosphate (CaP)-based materials is established by defining the parameters critical for tissue induction and those are linked to the molecular circuitry controlling cell physiology. The material properties (microporosity, ion composition, protein adsorption) of a set of synthesized osteoinductive and noninductive CaP ceramics are parameterized and these properties are correlated to a transcriptomics profile of osteogenic cells grown on the materials in vitro. Using these data, a genetic network controlling biomaterial-induced bone formation is built. By isolating the complex material properties into single-parameter test conditions, it is verified that a subset of these genes is indeed controlled by surface topography and ions released from the ceramics, respectively. The gene network points to a decisive role for extracellular matrix deposition in osteoinduction by genes such as tenascin C and hyaluronic acid synthase 2, which are controlled by calcium and phosphate ions as well as surface topography. This work provides insight into the biomaterial composition and material engineering aspects of bone void filling and can be used as a strategy to explore the interface between biomaterials and tissue regeneration.


Assuntos
Osso e Ossos , Materiais Biocompatíveis , Regeneração Óssea , Substitutos Ósseos , Fosfatos de Cálcio , Cerâmica , Redes Reguladoras de Genes , Osteogênese
11.
Environ Int ; 108: 127-136, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28843141

RESUMO

Long-term exposure to air pollution has been associated with several adverse health effects including cardiovascular, respiratory diseases and cancers. However, underlying molecular alterations remain to be further investigated. The aim of this study is to investigate the effects of long-term exposure to air pollutants on (a) average DNA methylation at functional regions and, (b) individual differentially methylated CpG sites. An assumption is that omic measurements, including the methylome, are more sensitive to low doses than hard health outcomes. This study included blood-derived DNA methylation (Illumina-HM450 methylation) for 454 Italian and 159 Dutch participants from the European Prospective Investigation into Cancer and Nutrition (EPIC). Long-term air pollution exposure levels, including NO2, NOx, PM2.5, PMcoarse, PM10, PM2.5 absorbance (soot) were estimated using models developed within the ESCAPE project, and back-extrapolated to the time of sampling when possible. We meta-analysed the associations between the air pollutants and global DNA methylation, methylation in functional regions and epigenome-wide methylation. CpG sites found differentially methylated with air pollution were further investigated for functional interpretation in an independent population (EnviroGenoMarkers project), where (N=613) participants had both methylation and gene expression data available. Exposure to NO2 was associated with a significant global somatic hypomethylation (p-value=0.014). Hypomethylation of CpG island's shores and shelves and gene bodies was significantly associated with higher exposures to NO2 and NOx. Meta-analysing the epigenome-wide findings of the 2 cohorts did not show genome-wide significant associations at single CpG site level. However, several significant CpG were found if the analyses were separated by countries. By regressing gene expression levels against methylation levels of the exposure-related CpG sites, we identified several significant CpG-transcript pairs and highlighted 5 enriched pathways for NO2 and 9 for NOx mainly related to the immune system and its regulation. Our findings support results on global hypomethylation associated with air pollution, and suggest that the shores and shelves of CpG islands and gene bodies are mostly affected by higher exposure to NO2 and NOx. Functional differences in the immune system were suggested by transcriptome analyses.


Assuntos
Poluentes Atmosféricos/farmacologia , Poluição do Ar , Metilação de DNA/efeitos dos fármacos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Doenças Cardiovasculares/induzido quimicamente , Estudos de Coortes , Exposição Ambiental/análise , Epigenômica , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Material Particulado/análise , Estudos Prospectivos , Fuligem/análise , População Branca
12.
Methods Mol Biol ; 1425: 339-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27311473

RESUMO

When evaluating compound similarity, addressing multiple sources of information to reach conclusions about common pharmaceutical and/or toxicological mechanisms of action is a crucial strategy. In this chapter, we describe a systems biology approach that incorporates analyses of hepatotoxicant data for 33 compounds from three different sources: a chemical structure similarity analysis based on the 3D Tanimoto coefficient, a chemical structure-based protein target prediction analysis, and a cross-study/cross-platform meta-analysis of in vitro and in vivo human and rat transcriptomics data derived from public resources (i.e., the diXa data warehouse). Hierarchical clustering of the outcome scores of the separate analyses did not result in a satisfactory grouping of compounds considering their known toxic mechanism as described in literature. However, a combined analysis of multiple data types may hypothetically compensate for missing or unreliable information in any of the single data types. We therefore performed an integrated clustering analysis of all three data sets using the R-based tool iClusterPlus. This indeed improved the grouping results. The compound clusters that were formed by means of iClusterPlus represent groups that show similar gene expression while simultaneously integrating a similarity in structure and protein targets, which corresponds much better with the known mechanism of action of these toxicants. Using an integrative systems biology approach may thus overcome the limitations of the separate analyses when grouping liver toxicants sharing a similar mechanism of toxicity.


Assuntos
Fígado/efeitos dos fármacos , Biologia de Sistemas/métodos , Testes de Toxicidade/métodos , Animais , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Estrutura Molecular , Ratos , Software , Toxicogenética
13.
Environ Mol Mutagen ; 55(6): 482-91, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24740823

RESUMO

In the context of environmental health research, biobank blood samples have recently been identified as suitable for high-throughput omics analyses enabling the identification of new biomarkers of exposure and disease. However, blood samples containing the anti-coagulant heparin could complicate transcriptomic analysis because heparin may inhibit RNA polymerase causing inefficient cRNA synthesis and fluorophore labelling. We investigated the inhibitory effect of heparin and the influence of storage conditions (0 or 3 hr bench times, storage at room temperature or -80°C) on fluorophore labelling in heparinized fresh human buffy coat and whole blood biobank samples during the mRNA work-up protocol for microarray analysis. Subsequently, we removed heparin by lithium chloride (LiCl) treatment and performed a quality control analysis of LiCl-treated biobank sample microarrays to prove their suitability for downstream data analysis. Both fresh and biobank samples experienced varying degrees of heparin-induced inhibition of fluorophore labelling, making most samples unusable for microarray analysis. RNA derived from EDTA and citrate blood was not inhibited. No effect of bench time was observed but room temperature storage gave slightly better results. Strong correlations were observed between original blood sample RNA yield and the amount of synthesized cRNA. LiCl treatment restored sample quality to normal standards in both fresh and biobank samples and the previously identified correlations disappeared. Microarrays hybridized with LiCl-treated biobank samples were of excellent quality with no identifiable influence of heparin. We conclude that, to obtain high quality results, in most cases heparin removal is essential in blood-derived RNA samples intended for microarray analysis.


Assuntos
Armazenamento de Sangue/métodos , Análise Química do Sangue/métodos , Heparina/análise , Análise em Microsséries/métodos , RNA/sangue , Corantes Fluorescentes/metabolismo , Heparina/metabolismo , Humanos , Cloreto de Lítio/farmacologia , Controle de Qualidade , Temperatura
14.
Environ Health Perspect ; 121(4): 480-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23384616

RESUMO

BACKGROUND: The suitability for omic analysis of biosamples collected in previous decades and currently stored in biobanks is unknown. OBJECTIVES: We evaluated the influence of handling and storage conditions of blood-derived biosamples on transcriptomic, epigenomic (CpG methylation), plasma metabolomic [UPLC-ToFMS (ultra performance liquid chromatography-time-of-flight mass spectrometry)], and wide-target proteomic profiles. METHODS: We collected fresh blood samples without RNA preservative in heparin, EDTA, or citrate and held them at room temperature for ≤ 24 hr before fractionating them into buffy coat, erythrocytes, and plasma and freezing the fractions at -80oC or in liquid nitrogen. We developed methodology for isolating RNA from the buffy coats and conducted omic analyses. Finally, we analyzed analogous samples from the EPIC-Italy and Northern Sweden Health and Disease Study biobanks. RESULTS: Microarray-quality RNA could be isolated from buffy coats (including most biobank samples) that had been frozen within 8 hr of blood collection by thawing the samples in RNA preservative. Different anticoagulants influenced the metabolomic, proteomic, and to a lesser extent transcriptomic profiles. Transcriptomic profiles were most affected by the delay (as little as 2 hr) before blood fractionation, whereas storage temperature had minimal impact. Effects on metabolomic and proteomic profiles were noted in samples processed ≥ 8 hr after collection, but no effects were due to storage temperature. None of the variables examined significantly influenced the epigenomic profiles. No systematic influence of time-in-storage was observed in samples stored over a period of 13-17 years. CONCLUSIONS: Most samples currently stored in biobanks are amenable to meaningful omics analysis, provided that they satisfy collection and storage criteria defined in this study.


Assuntos
Bancos de Espécimes Biológicos , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Metabolômica/métodos , RNA/análise , Manejo de Espécimes , Anticoagulantes/química , Biomarcadores/sangue , Saúde Ambiental/métodos , Humanos , Fatores de Tempo
15.
Food Chem Toxicol ; 50(2): 95-103, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22019696

RESUMO

Red meat consumption is associated with an increased colorectal cancer (CRC) risk, which may be due to an increased endogenous formation of genotoxic N-nitroso compounds (NOCs). To assess the impact of red meat consumption on potential risk factors of CRC, we investigated the effect of a 7-day dietary red meat intervention in human subjects on endogenous NOC formation and fecal water genotoxicity in relation to genome-wide transcriptomic changes induced in colonic tissue. The intervention showed no effect on fecal NOC excretion but fecal water genotoxicity significantly increased in response to red meat intake. Colonic inflammation caused by inflammatory bowel disease, which has been suggested to stimulate endogenous nitrosation, did not influence fecal NOC excretion or fecal water genotoxicity. Transcriptomic analyses revealed that genes significantly correlating with the increase in fecal water genotoxicity were involved in biological pathways indicative of genotoxic effects, including modifications in DNA damage repair, cell cycle, and apoptosis pathways. Moreover, WNT signaling and nucleosome remodeling pathways were modulated which are implicated in human CRC development. We conclude that the gene expression changes identified in this study corroborate the genotoxic potential of diets high in red meat and point towards a potentially increased CRC risk in humans.


Assuntos
Colo/metabolismo , Dieta/efeitos adversos , Fezes/química , Regulação da Expressão Gênica/fisiologia , Carne/efeitos adversos , Água/análise , Adulto , Idoso , Dano ao DNA , Feminino , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Masculino , Pessoa de Meia-Idade , Nitrosação
16.
Toxicol Lett ; 207(3): 232-41, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21946166

RESUMO

N-nitroso compounds (NOCs) may represent a carcinogenic risk to humans following endogenous colonic nitrosation processes. We used the colon adenocarcinoma cell line Caco-2 to investigate transcriptomic changes at three time points (1, 6, 24 h) following exposure to genotoxic concentrations of six different NOCs (two nitrosamides, four nitrosamines) with the purpose of identifying biological processes that may play a part in the carcinogenicity of these compounds. This is especially important for nitrosamide exposure where, in light of their high reactivity, important gene expression modifications may take place early in the exposure. We also analyzed NOC-induced O(6)-methylguanine adducts in relation to transcriptomics since these adducts may influence the expression of genes pivotal in NOC-associated carcinogenicity. Many modified pathways appeared related to DNA damage, cell cycle, apoptosis, growth factor signaling and differentiation, which are linked with carcinogenicity. Nitrosamides showed the strongest response at 1h of exposure, while nitrosamines had the strongest effect at 6 and 24 h. Additionally, methylation was strongly associated with processes that may contribute to the carcinogenic risk. In summary, we have found that NOC-induced gene expression changes vary over time and that many of the modified pathways and processes indicate a carcinogenic risk associated with NOC exposure.


Assuntos
Carcinógenos/toxicidade , Colo/efeitos dos fármacos , Perfilação da Expressão Gênica , Nitrosaminas/toxicidade , Compostos Nitrosos/toxicidade , Apoptose/efeitos dos fármacos , Células CACO-2/efeitos dos fármacos , Células CACO-2/metabolismo , Ciclo Celular/efeitos dos fármacos , Colo/citologia , Dietilnitrosamina/toxicidade , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metilnitronitrosoguanidina/toxicidade , Metilnitrosoureia/toxicidade , N-Nitrosopirrolidina/toxicidade , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Tempo
17.
Cancer Lett ; 309(1): 1-10, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21669488

RESUMO

Endogenous formation of N-nitroso compounds (NOCs), which are known animal carcinogens, could contribute to human carcinogenesis but definitive evidence is still lacking. To investigate the relevance of NOCs in human colorectal cancer (CRC) development, we analyzed whole genome gene expression modifications in human colon biopsies in relation to fecal NOC exposure. We had a particular interest in patients suffering from intestinal inflammation as this may stimulate endogenous NOC formation, and consequently predispose to CRC risk. Inflammatory bowel disease (IBD) patients diagnosed with ulcerative colitis and irritable bowel syndrome patients without inflammation, serving as controls, were therefore recruited. Fecal NOC were demonstrated in the majority of subjects. By associating gene expression levels of all subjects to fecal NOC levels, we identified a NOC exposure-associated transcriptomic response that suggests that physiological NOC concentrations may potentially induce genotoxic responses and chromatin modifications in human colon tissue, both of which are linked to carcinogenicity. In a network analysis, chromatin modifications were linked to 11 significantly modulated histone genes, pointing towards a possible epigenetic mechanism that may be relevant in comprehending NOC-induced carcinogenesis. In addition, pro-inflammatory transcriptomic modifications were identified in visually non-inflamed regions of the IBD colon. However, fecal NOC levels were slightly but not significantly increased in IBD patients, suggesting that inflammation did not strongly stimulate NOC formation. We conclude that NOC exposure is associated with gene expression modifications in the human colon that may suggest a potential role of these compounds in CRC development.


Assuntos
Perfilação da Expressão Gênica , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Compostos Nitrosos , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Transformação Celular Neoplásica/induzido quimicamente , Colo/química , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Fezes/química , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Masculino , Pessoa de Meia-Idade , Compostos Nitrosos/análise , Compostos Nitrosos/metabolismo , Compostos Nitrosos/toxicidade
18.
Toxicol Sci ; 116(1): 194-205, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20403970

RESUMO

N-nitroso compounds (NOCs) may be implicated in human colon carcinogenesis, but the toxicological mechanisms involved have not been elucidated. Because it was previously demonstrated that nitrosamines and nitrosamides, representing two classes of NOC, induce distinct gene expression effects in colon cells that are particularly related to oxidative stress, we hypothesized that different radical mechanisms are involved. Using electron spin resonance spectroscopy, we investigated the radical-generating properties of genotoxic NOC concentrations in human colon adenocarcinoma cells (Caco-2). Cells were exposed to nitrosamides (N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea) or nitrosamines (N-nitrosodiethylamine, N-nitrosodimethylamine, N-nitrosopiperidine, and N-nitrosopyrrolidine). Nitrosamines caused formation of reactive oxygen species (ROS) and carbon-centered radicals, which was further stimulated in the presence of Caco-2 cells. N-methyl-N-nitrosourea exposure resulted in a small ROS signal, and formation of nitrogen-centered radicals (NCRs), also stimulated by Caco-2 cells. N-methyl-N'-nitro-N-nitrosoguanidine did not cause radical formation at genotoxic concentrations, but at increased exposure levels, both ROS and NCR formation was observed. By associating gene expression patterns with ROS formation, several cellular processes responding to nitrosamine exposure were identified, including apoptosis, cell cycle blockage, DNA repair, and oxidative stress. These findings suggest that following NOC exposure in Caco-2 cells, ROS formation plays an important role in deregulation of gene expression patterns that may be relevant for the process of chemical carcinogenesis in the human colon, in addition to the role of DNA alkylation.


Assuntos
Estudo de Associação Genômica Ampla , Nitrosaminas/toxicidade , Compostos Nitrosos/toxicidade , Células CACO-2 , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Espécies Reativas de Oxigênio/metabolismo
19.
Toxicol Sci ; 108(2): 290-300, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19221148

RESUMO

N-nitroso compounds (NOC) are genotoxic, carcinogenic to animals, and may play a role in human cancer development. Because the gastro-intestinal tract is an important route of exposure through endogenous nitrosation, we hypothesize that NOC exposure targets genetic processes relevant in colon carcinogenesis. To investigate these genomic responses, we analyzed the transcriptomic effects of genotoxic concentrations of two nitrosamides, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 1 microM) and N-methyl-N-nitrosurea (MNU, 1 mM), and four nitrosamines, N-nitrosodiethylamine (NDEA, 50mM), N-nitrosodimethylamine (NDMA, 100 mM), N-nitrosopiperidine (NPIP, 40 mM), and N-nitrosopyrrolidine (NPYR, 100mM), in the human colon carcinoma cell line Caco-2. Gene Ontology gene group, consensus motif gene group and biological pathway analysis revealed that nitrosamides had little effect on gene expression after 24 h of exposure, whereas nitrosamines had a strong impact on the transcriptomic profile. Analyses showed modifications of cell cycle regulation and apoptosis pathways for nitrosamines which was supported by flow cytometric analysis. We found additional modifications in gene groups and pathways of oxidative stress and inflammation, which suggest an increase in oxidative stress and proinflammatory immune response upon nitrosamine exposure, although less distinct for NDMA. Furthermore, NDEA, NPIP, and NPYR most strongly affected several developmental motif gene groups and pathways, which may influence developmental processes. Many of these pathways and gene groups are implicated in the carcinogenic process and their modulation by nitrosamine exposure may therefore influence the development of colon cancer. In summary, our study has identified pathway modifications in human colon cells which may be associated with cancer risk of nitrosamine exposure in the human colon.


Assuntos
Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Compostos Nitrosos/química , Compostos Nitrosos/toxicidade , Apoptose/efeitos dos fármacos , Células CACO-2 , Ciclo Celular/efeitos dos fármacos , Ensaio Cometa , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Humanos , Imuno-Histoquímica , Hibridização In Situ , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA/biossíntese , RNA/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA