Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 11(2): 162-6, 2011 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22138790

RESUMO

Electrochemical oxidation of metals, in solutions where the oxide is somewhat soluble, produces anodic oxides with highly regular arrangements of pores. Although porous aluminium and titanium oxides have found extensive use in functional nanostructures, pore initiation and self-ordering are not yet understood. Here we present an analysis that examines the roles of oxide dissolution and ionic conduction in the morphological stability of anodic films. We show that patterns of pores with a minimum spacing are possible only within a narrow range of the oxide formation efficiency (the fraction of oxidized metal atoms retained in the film), which should exist when the metal ion charge exceeds two. Experimentally measured efficiencies, over diverse anodizing conditions on both aluminium and titanium, lie within the different ranges predicted for each metal. On the basis of these results, the relationship between dissolution chemistry and the conditions for pore initiation can now be understood in quantitative terms.

2.
Langmuir ; 28(3): 1673-7, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22220909

RESUMO

″Ultrathin″ metallization layers on the order of nanometers in thickness are increasingly used in semiconductor interconnects and other nanostructures. Aqueous deposition methods are attractive methods to produce such layers due to their low cost, but formation of ultrathin layers has proven challenging, particularly on oxide-coated substrates. This work focused on the formation of thin copper layers on aluminum, by galvanic displacement from alkaline aqueous solutions. Analysis by atom probe tomography (APT) showed that continuous copper films of approximately 1 nm thickness were formed, apparently the first demonstration of deposition of ultrathin metal layers on oxidized substrates from aqueous solutions. The APT reconstructions indicate that deposited copper replaced a portion of the surface oxide film on aluminum. The results are consistent with mechanisms in which surface hydride species on aluminum mediate deposition, either by directly reducing cupric ions or by inducing electronic conduction in the oxide, thus enabling cupric ion reduction by Al metal.

3.
Nat Mater ; 8(5): 415-20, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19363477

RESUMO

Porous anodic alumina (PAA) films are widely used as templates for functional nanostructures, because of the high regularity and controllability of the pore morphology. However, growth mechanisms have not yet been developed that can explain quantitative relationships between processing conditions and oxide layer geometry. Here, we present a model for steady-state growth of these amorphous films, incorporating the novel feature that metal and oxygen ions are transported by coupled electrical migration and viscous flow. The oxide flow in the model arises near the film-solution interface at the pore bottoms, in response to the constraint of volume conservation. The hypothesis of viscous flow was successfully validated through detailed comparisons to observations of the motion of tungsten tracers in the film. Predictions of localized tensile stress near nanoscale ridges at the metal-film interface were supported by observations of voids at these sites. We suggest that the ordering of PAA may be explained by a mechanism in which metal-film interface motion is regulated by the combination of ionic migration in the oxide and stress-driven interface diffusion of metal atoms.


Assuntos
Óxido de Alumínio/química , Óxidos/química , Eletrodos , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA