Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (203)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38314798

RESUMO

Bipolar cells and horizontal cells of the vertebrate retina are the first neurons to process visual information after photons are detected by photoreceptors. They perform fundamental operations such as light adaptation, contrast sensitivity, and spatial and color opponency. A complete understanding of the precise circuitry and biochemical mechanisms that govern their behavior will advance visual neuroscience research and ophthalmological medicine. However, current preparations for examining bipolar and horizontal cells (retinal whole mounts and vertical slices) are limited in their capacity to capture the anatomy and physiology of these cells. In this work, we present a method for removing photoreceptor cell bodies from live, flatmount mouse retinas, providing enhanced access to bipolar and horizontal cells for efficient patch clamping and rapid immunolabeling. Split retinas are prepared by sandwiching an isolated mouse retina between two pieces of nitrocellulose, then gently peeling them apart. The separation splits the retina just above the outer plexiform layer to yield two pieces of nitrocellulose, one containing the photoreceptor cell bodies and another containing the remaining inner retina. Unlike vertical retina slices, the split retina preparation does not sever the dendritic processes of inner retinal neurons, allowing for recordings from bipolar and horizontal cells that integrate the contributions of gap junction-coupled networks and wide-field amacrine cells. This work demonstrates the versatility of this preparation for the study of horizontal and bipolar cells in electrophysiology, immunohistochemistry, and in situ hybridization experiments.


Assuntos
Células Amácrinas , Retina , Camundongos , Animais , Colódio , Retina/fisiologia , Células Fotorreceptoras , Vertebrados
2.
Front Ophthalmol (Lausanne) ; 3: 1226224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38983050

RESUMO

The ability of the visual system to relay meaningful information over a wide range of lighting conditions is critical to functional vision, and relies on mechanisms of adaptation within the retina that adjust sensitivity and gain as ambient light changes. Photoreceptor synapses represent the first stage of image processing in the visual system, thus activity-driven changes at this site are a potentially powerful, yet under-studied means of adaptation. To gain insight into these mechanisms, the abundance and distribution of key synaptic proteins involved in photoreceptor to ON-bipolar cell transmission were compared between light-adapted mice and mice subjected to prolonged dark exposure (72 hours), by immunofluorescence confocal microscopy and immunoblotting. We also tested the effects on protein abundance and distribution of 0.5-4 hours of light exposure following prolonged darkness. Proteins examined included the synaptic ribbon protein, ribeye, and components of the ON-bipolar cell signal transduction pathway (mGluR6, TRPM1, RGS11, GPR179, Goα). The results indicate a reduction in immunoreactivity for ribeye, TRPM1, mGluR6, and RGS11 following prolonged dark exposure compared to the light-adapted state, but a rapid restoration of the light-adapted pattern upon light exposure. Electron microscopy revealed similar ultrastructure of light-adapted and dark-adapted photoreceptor terminals, with the exception of electron dense vesicles in dark-adapted but not light-adapted ON-bipolar cell dendrites. To assess synaptic transmission from photoreceptors to ON-bipolar cells, we recorded electroretinograms after different dark exposure times (2, 16, 24, 48, 72 hours) and measured the b-wave to a-wave ratios. Consistent with the reduction in synaptic proteins, the b/a ratios were smaller following prolonged dark exposure (48-72 hours) compared to 16 hours dark exposure (13-21%, depending on flash intensity). Overall, the results provide evidence of light/dark-dependent plasticity in photoreceptor synapses at the biochemical, morphological, and physiological levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA