Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-32831801

RESUMO

Smart manufacturing promises to provide significant increases in productivity and effectiveness of manufacturing systems by better connecting the data from people, processes, and things. However, there is no uniform, generalized method for deploying linked-data concepts to the manufacturing domain. The literature describes and commercial vendors offer centralized data repository solutions, but these types of approaches quickly breakdown under the intense burden of managing and reconciling all the data flowing in and out of the various repositories across the product lifecycle. In this paper, we introduce a method for linking and tracing data throughout the product lifecycle using graphs to form digital threads. We describe a prototype implementation of the method and a case study to demonstrate an information round-trip for a product assembly between the design, manufacturing, and quality domains of the product lifecycle. The expected impact from this novel, standards-based, linked-data method is the ability to use digital threads to provide data, system, and viewpoint interoperability in the deployment of smart manufacturing to realize industry's $30 Billion annual opportunity.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32116473

RESUMO

Trust in product-data quality (PDQ) is critical to successful implementation of model-based enterprise (MBE). Such trust does not extend to the exchange and reuse of three-dimensional (3D)-product models across the product lifecycle because verifiable traceability in product data is lacking. This assurance is especially crucial when "siloed" manufacturing functions produce product data that is not fully interoperable and thus requires frequent reworking to enable reuse. Previous research showed how Public Key Infrastructure (X.509-PKI) from the X.509 standard could be used to embed digital signatures into product data for the purposes of certification and traceability. This paper first provides an overview and review of technologies that could be integrated to support trust throughout the product lifecycle. The paper then proposes a trust structure that supports several data-transaction types. Next, the paper presents a case study for common configuration management (CM) workflows that are typically found in regulated industries. Finally, the paper draws conclusions and provides recommendations for further research for enabling the product lifecycle of trust (PLOT).

3.
Artigo em Inglês | MEDLINE | ID: mdl-30996391

RESUMO

The digital thread links disparate systems across the product lifecycle to support data curation and information cultivation and enable data-driven applications, e.g., digital twin. Realizing the digital thread requires the integration of semantically-rich, open standards to facilitate the dynamic creation of context based on multiple viewpoints. This research develops such an approach to link as-planned (ISO 6983) to as-fabricated (MTConnect) product data using dynamic time warping. Applying this approach to a production part enabled the designer to make a more optimal decision from the perspective of the product lifecycle that would have otherwise been challenging to identify.

4.
Int J Prod Lifecycle Manag ; 10(4): 326-347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29911681

RESUMO

Recent advances enable data from manufacturing systems to be captured and contextualised relative to other phases of the product lifecycle, a necessary step toward understanding system behaviour and satisfying traceability requirements. Significant challenges remain for integrating information across the lifecycle and enabling efficient decision-making. In this paper, we explore opportunities for mapping standard data representations, such as the Standard for the Exchange of Product Data (STEP), MTConnect, and the Quality Information Framework (QIF) to integrate information silos existing across the lifecycle. To demonstrate this vision, we describe a reference implementation with a contract manufacturer in the National Institute of Standards and Technology (NIST) Smart Manufacturing Systems Test Bed. Using this implementation, we explore how knowledge generated from manufacturing can support lifecycle decision-making. As a case study, we then present an interactive prototype correlating the test bed's data based on the context that must be provided for a specific decision-making viewpoint.

5.
J Manuf Sci Eng ; 139(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28070155

RESUMO

The manufacturing industry is evolving and starting to use 3D models as the central knowledge artifact for product data and product definition, or what is known as Model-based Definition (MBD). The Model-based Enterprise (MBE) uses MBD as a way to transition away from using traditional paper-based drawings and documentation. As MBD grows in popularity, it is imperative to understand what information is needed in the transition from drawings to models so that models represent all the relevant information needed for processes to continue efficiently. Finding this information can help define what data is common amongst different models in different stages of the lifecycle, which could help establish a Common Information Model. The Common Information Model is a source that contains common information from domain specific elements amongst different aspects of the lifecycle. To help establish this Common Information Model, information about how models are used in industry within different workflows needs to be understood. To retrieve this information, a survey mechanism was administered to industry professionals from various sectors. Based on the results of the survey a Common Information Model could not be established. However, the results gave great insight that will help in further investigation of the Common Information Model.

6.
J Comput Inf Sci Eng ; 17(2)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28265224

RESUMO

Industry has been chasing the dream of integrating and linking data across the product lifecycle and enterprises for decades. However, industry has been challenged by the fact that the context in which data is used varies based on the function / role in the product lifecycle that is interacting with the data. Holistically, the data across the product lifecycle must be considered an unstructured data-set because multiple data repositories and domain-specific schema exist in each phase of the lifecycle. This paper explores a concept called the Lifecycle Information Framework and Technology (LIFT). LIFT is a conceptual framework for lifecycle information management and the integration of emerging and existing technologies, which together form the basis of a research agenda for dynamic information modeling in support of digital-data curation and reuse in manufacturing. This paper provides a discussion of the existing technologies and activities that the LIFT concept leverages. Also, the paper describes the motivation for applying such work to the domain of manufacturing. Then, the LIFT concept is discussed in detail, while underlying technologies are further examined and a use case is detailed. Lastly, potential impacts are explored.

7.
J Comput Inf Sci Eng ; 17(1)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27840596

RESUMO

Exchange and reuse of three-dimensional (3D)-product models are hampered by the absence of trust in product-lifecycle-data quality. The root cause of the missing trust is years of "silo" functions (e.g., engineering, manufacturing, quality assurance) using independent and disconnected processes. Those disconnected processes result in data exchanges that do not contain all of the required information for each downstream lifecycle process, which inhibits the reuse of product data and results in duplicate data. The X.509 standard, maintained by the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T), was first issued in 1988. Although originally intended as the authentication framework for the X.500 series for electronic directory services, the X.509 framework is used in a wide range of implementations outside the originally intended paradigm. These implementations range from encrypting websites to software-code signing, yet X.509 certificate use has not widely penetrated engineering and product realms. Our approach is not trying to provide security mechanisms, but equally as important, our method aims to provide insight into what is happening with product data to support trusting the data. This paper provides a review of the use of X.509 certificates and proposes a solution for embedding X.509 digital certificates in 3D models for authentication, authorization, and traceability of product data. This paper also describes an application within the Aerospace domain. Finally, the paper draws conclusions and provides recommendations for further research into using X.509 certificates in product lifecycle management (PLM) workflows to enable a product lifecycle of trust.

8.
J Comput Inf Sci Eng ; 17(3)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28966561

RESUMO

The need for capturing knowledge in the digital form in design, process planning, production, and inspection has increasingly become an issue in manufacturing industries as the variety and complexity of product lifecycle applications increase. Both knowledge and data need to be well managed for quality assurance, lifecycle-impact assessment, and design improvement. Some technical barriers exist today that inhibit industry from fully utilizing design, planning, processing, and inspection knowledge. The primary barrier is a lack of a well-accepted mechanism that enables users to integrate data and knowledge. This paper prescribes knowledge management to address a lack of mechanisms for integrating, sharing, and updating domain-specific knowledge in smart manufacturing. Aspects of the knowledge constructs include conceptual design, detailed design, process planning, material property, production, and inspection. The main contribution of this paper is to provide a methodology on what knowledge manufacturing organizations access, update, and archive in the context of smart manufacturing. The case study in this paper provides some example knowledge objects to enable smart manufacturing.

9.
J Comput Inf Sci Eng ; 16(2)2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27325911

RESUMO

A number of manufacturing companies have reported anecdotal evidence describing the benefits of Model-Based Enterprise (MBE). Based on this evidence, major players in industry have embraced a vision to deploy MBE. In our view, the best chance of realizing this vision is the creation of a single "digital thread." Under MBE, there exists a Model-Based Definition (MBD), created by the Engineering function, that downstream functions reuse to complete Model-Based Manufacturing and Model-Based Inspection activities. The ensemble of data that enables the combination of model-based definition, manufacturing, and inspection defines this digital thread. Such a digital thread would enable real-time design and analysis, collaborative process-flow development, automated artifact creation, and full-process traceability in a seamless real-time collaborative development among project participants. This paper documents the strengths and weaknesses in the current, industry strategies for implementing MBE. It also identifies gaps in the transition and/or exchange of data between various manufacturing processes. Lastly, this paper presents measured results from a study of model-based processes compared to drawing-based processes and provides evidence to support the anecdotal evidence and vision made by industry.

12.
Infect Control Hosp Epidemiol ; 40(10): 1157-1163, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31385562

RESUMO

OBJECTIVE: Alternatives to skin preparation with conventional preoperative antiseptics are required because of adverse reactions and the potential emergence of resistance. Here, we present 2 phase 2 studies of ZuraGard (ZG), a novel formulation of isopropyl alcohol and functional excipients developed for preoperative skin antisepsis. METHODS: Microbial skin flora on abdominal and inguinal sites in healthy volunteers were quantitatively assessed following application of ZG versus a negative control (ZV) and a chlorhexidine/alcohol preparation, Chloraprep (CP). In trial 1, ZG administered for both recommended and abbreviated application times was compared with CP and ZV via bacterial reductions at 10 minutes, and 6 hours, 12 hours, and 24 hours following application. In trial 2, the 10-minute postapplication responder rates (RRs) for ZG, participants with abdominal ≥2 log10 per cm2, and inguinal ≥3 log10 per cm2 reductions in colony-forming units (CFU) were compared to RRs of participants treated with CP. RESULTS: In trial 1, ZG at the recommended application time reduced mean bacterial counts by ~3.18 log10 CFU/cm2 and ~2.98 log10 CFU/cm2 at abdominal and inguinal sites, respectively. Qualitatively similar reductions were observed for the abbreviated ZG application time and all CP applications. Application of ZV was ineffective. In trial 2, 10-minute RRs for ZG and CP exceeded 90% at abdominal sites. At inguinal sites, RRs were 83.3% for ZG and 86.7% for CP. No skin irritation or other adverse events were observed. CONCLUSIONS: ZG matched CP efficacy under these experimental conditions with immediate and persistent microbial reductions, including abbreviated application times. Further clinical studies of this novel preoperative antiseptic are merited.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Cuidados Pré-Operatórios , Pele/microbiologia , Infecção da Ferida Cirúrgica/prevenção & controle , 2-Propanol/administração & dosagem , Abdome , Administração Cutânea , Adulto , Idoso , Clorexidina/administração & dosagem , Ácido Cítrico/administração & dosagem , Contagem de Colônia Microbiana , Fármacos Dermatológicos/administração & dosagem , Desinfecção , Feminino , Humanos , Hidroxibenzoatos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Têxteis , Resultado do Tratamento , Adulto Jovem
13.
J Manuf Syst ; 48 Pt C2018.
Artigo em Inglês | MEDLINE | ID: mdl-31092965

RESUMO

Machine learning (ML) (a subset of artificial intelligence that focuses on autonomous computer knowledge gain) is actively being used across many domains, such as entertainment, commerce, and increasingly in industrial settings. The wide applicability and low barriers for development of these algorithms are allowing for innovations, once thought unattainable, to be realized in an ever more digital world. As these innovations continue across industries, the manufacturing industry has also begun to gain benefits. With the current push for Smart Manufacturing and Industrie 4.0, ML for manufacturing is experiencing unprecedented levels of interest; but how much is industry actually using these highly-publicized techniques? This paper sorts through a decade of manufacturing publications to quantify the amount of effort being put towards advancing ML in manufacturing. This work identifies both prominent areas of ML use, and popular algorithms. This also allows us to highlight any gaps, or areas where ML could play a vital role. To maximize the search space utilization of this investigation, ML based Natural Language Processing (NLP) techniques were employed to rapidly sort through a vast corpus of engineering documents to identify key areas of research and application, as well as uncover documents most pertinent to this survey. The salient outcome of this research is the presentation of current focus areas and gaps in ML applications to the manufacturing industry, with particular emphasis on cross domain knowledge utilization. A full detailing of methods and findings is presented.

14.
Artigo em Inglês | MEDLINE | ID: mdl-30984288

RESUMO

The increasing growth of digital technologies in manufacturing has provided industry with opportunities to improve its productivity and operations. One such opportunity is the digital thread, which links product lifecycle systems so that shared data may be used to improve design and manufacturing processes. The development of the digital thread has been challenged by the inherent difficulty of aggregating and applying context to data from heterogeneous systems across the product lifecycle. This paper presents a reference four-tiered architecture designed to manage the data generated by manufacturing systems for the digital thread. The architecture provides segregated access to internal and external clients, which protects intellectual property and other sensitive information, and enables the fusion of manufacturing and other product lifecycle data. We have implemented the architecture with a contract manufacturer and used it to generate knowledge and identify performance improvement opportunities that would otherwise be unobservable to a manufacturing decision maker.

15.
Int J Prod Res ; 55(3): 819-827, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27990027

RESUMO

Design for Manufacturing (DFM), especially the use of manufacturing knowledge to support design decisions, has received attention in the academic domain. However, industry practice has not been studied enough to provide solutions that are mature for industry. The current state of the art for DFM is often rule-based functionality within Computer-Aided Design (CAD) systems that enforce specific design requirements. That rule-based functionality may or may not dynamically affect geometry definition. And, if rule-based functionality exists in the CAD system, it is typically a customization on a case-by-case basis. Manufacturing knowledge is a phrase with vast meanings, which may include knowledge on the effects of material properties decisions, machine and process capabilities, or understanding the unintended consequences of design decisions on manufacturing. One of the DFM questions to answer is how can manufacturing knowledge, depending on its definition, be used earlier in the product lifecycle to enable a more collaborative development environment? This paper will discuss the results of a workshop on manufacturing knowledge that highlights several research questions needing more study. This paper proposes recommendations for investigating the relationship of manufacturing knowledge with shape, behavior, and context characteristics of product to produce a better understanding of what knowledge is most important. In addition, the proposal includes recommendations for investigating the system-level barriers to reusing manufacturing knowledge and how model-based manufacturing may ease the burden of knowledge sharing. Lastly, the proposal addresses the direction of future research for holistic solutions of using manufacturing knowledge earlier in the product lifecycle.

16.
Procedia CIRP ; 43: 13-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28690976

RESUMO

On October 30, 2014 the American National Standards Institute (ANSI) approved QIF v 2.0 (Quality Information Framework, version 2.0) as an American National Standard. Subsequently in early 2016 QIF version 2.1 was approved. This paper describes how the QIF standard models the information necessary for quality workflow across the full metrology enterprise. After a brief description of the XML 'language' used in the standard, the paper reports on how the standard enables information exchange among four major activities in the metrology enterprise (product definition; measurement planning; measurement execution; and the analysis and reporting of the quality data).

17.
Artigo em Inglês | MEDLINE | ID: mdl-28691120

RESUMO

Advances in information technology triggered a digital revolution that holds promise of reduced costs, improved productivity, and higher quality. To ride this wave of innovation, manufacturing enterprises are changing how product definitions are communicated - from paper to models. To achieve industry's vision of the Model-Based Enterprise (MBE), the MBE strategy must include model-based data interoperability from design to manufacturing and quality in the supply chain. The Model-Based Definition (MBD) is created by the original equipment manufacturer (OEM) using Computer-Aided Design (CAD) tools. This information is then shared with the supplier so that they can manufacture and inspect the physical parts. Today, suppliers predominantly use Computer-Aided Manufacturing (CAM) and Coordinate Measuring Machine (CMM) models for these tasks. Traditionally, the OEM has provided design data to the supplier in the form of two-dimensional (2D) drawings, but may also include a three-dimensional (3D)-shape-geometry model, often in a standards-based format such as ISO 10303-203:2011 (STEP AP203). The supplier then creates the respective CAM and CMM models and machine programs to produce and inspect the parts. In the MBE vision for model-based data exchange, the CAD model must include product-and-manufacturing information (PMI) in addition to the shape geometry. Today's CAD tools can generate models with embedded PMI. And, with the emergence of STEP AP242, a standards-based model with embedded PMI can now be shared downstream. The on-going research detailed in this paper seeks to investigate three concepts. First, that the ability to utilize a STEP AP242 model with embedded PMI for CAD-to-CAM and CAD-to-CMM data exchange is possible and valuable to the overall goal of a more efficient process. Second, the research identifies gaps in tools, standards, and processes that inhibit industry's ability to cost-effectively achieve model-based-data interoperability in the pursuit of the MBE vision. Finally, it also seeks to explore the interaction between CAD and CMM processes and determine if the concept of feedback from CAM and CMM back to CAD is feasible. The main goal of our study is to test the hypothesis that model-based-data interoperability from CAD-to-CAM and CAD-to-CMM is feasible through standards-based integration. This paper presents several barriers to model-based-data interoperability. Overall, the project team demonstrated the exchange of product definition data between CAD, CAM, and CMM systems using standards-based methods. While gaps in standards coverage were identified, the gaps should not stop industry's progress toward MBE. The results of our study provide evidence in support of an open-standards method to model-based-data interoperability, which would provide maximum value and impact to industry.

18.
Procedia Manuf ; 1: 86-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28664167

RESUMO

Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a "digital thread" of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies.

19.
Int J Dev Neurosci ; 21(2): 95-103, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12615085

RESUMO

Both N-methyl-D-aspartate (NMDA) and quisqualate/AMPA-insensitive metabotropic glutamate (mGlu) receptors mediate glutamate neurotransmission in substantia nigra (SN). In this work, NMDA and mGlu receptor sites in substantia nigra pars compacta (SNC) and pars reticulata were autoradiographically mapped in rat brains using specific binding of (+)3H-MK801 or 3H-glutamate, with saturating concentrations of NMDA, AMPA and quisqualate. In brains of both adult and postnatal day 15 (PN15) male rats, prepared at subjective mid-day of a 12h light/12h dark (12h L/12h D) cycle, specific binding at NMDA and mGlu sites in substantia nigra was pronounced when compared with control binding. The (+)3H-MK801 binding in adults was spatially heterogeneous. Overall binding density in pars compacta was higher relative to binding density in pars reticulata with a mean percent change (Deltaxmacr;%) of 32%. Within the pars reticulata but not pars compacta, there were rostro-caudal differences with considerably denser binding in the posterior compared with the anterior pars reticulata (Deltaxmacr;%=108%). PN15 rats showed a less pronounced heterogeneity in pars compacta versus pars reticulata binding, (Deltaxmacr;%=27%), and less rostro-caudal differentiation in (+)3H-MK801 binding density throughout pars reticulata (Deltaxmacr;%=46%). 3H-glutamate binding in both adult and PN15 rats was less dense overall than (+)3H-MK801 binding. In adults, there was no difference in binding density between pars compacta and pars reticulata (Deltaxmacr;%=0.4%), but there were marked heterogeneities when binding was compared between anterior versus posterior pars compacta (Deltaxmacr;%=29%), and anterior versus posterior pars reticulata (Deltaxmacr;%=25%). This rostro-caudal heterogeneity in 3H-glutamate binding density was also present in PN15 pars compacta (Deltaxmacr;%=45%) but not in pars reticulata. Our findings mirror similar anterior/posterior heterogeneities in the GABAergic system in adult and PN15 male rats and may reflect a developmental change in both the structure and anticonvulsant/proconvulsant properties of substantia nigra pars reticulata (SNR) with age.


Assuntos
Envelhecimento/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Substância Negra/metabolismo , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Animais Recém-Nascidos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
20.
Clin Drug Investig ; 23(10): 671-7, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-17535082

RESUMO

BACKGROUND AND OBJECTIVE: Oxcarbazepine, an antiepileptic and a derivative of carbamazepine, has been shown to have clinical utility as an antimanic agent. This study sought to assess the efficacy and tolerability of oxcarbazepine compared with divalproex sodium in the treatment of patients with mania. PATIENTS AND METHODS: 57 patients from a large clinical practice who had recently begun treatment with divalproex sodium were randomly assigned to one of two treatment groups. In this open-label, single (rater)-blind study, group 1 remained on treatment with divalproex sodium and group 2 was switched to oxcarbazepine. Both treatment groups were followed for 10 weeks after the switch. Pharmacotherapeutic efficacy was compared using the Clinician Administered Rating Scale for Mania (CARS-M). Weight and adverse events were monitored throughout the study. RESULTS: 83% of patients using oxcarbazepine showed a decrease in mania as assessed using the CARS-M, and 70% showed a net decrease in weight over the 10-week course of the study. For the divalproex sodium group, 53% showed a decrease in mania, as assessed by CARS-M, and 37% lost weight. CONCLUSION: Oxcarbazepine showed comparable efficacy to divalproex sodium, yet appeared to do so with an equal or more benign side-effect profile, particularly with regard to weight. These results suggest that oxcarbazepine, which has been used in Europe for the treatment of mood disorders for some time (albeit used off-label for this purpose) may show promise for use in the US as an agent for maintenance of non-acute mania.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA