Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 132(1): 29-42, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36928083

RESUMO

BACKGROUND AND AIMS: Plants have evolved an unrivalled diversity of reproductive strategies, including variation in the degree of sexual vs. clonal reproduction. This variation has important effects on the dynamics and genetic structure of populations. We examined the association between large-scale variation in reproductive patterns and intraspecific genetic diversity in two moss species where sex is manifested in the dominant haploid generation and sex expression is irregular. We predicted that in regions with more frequent realized sexual reproduction, populations should display less skewed sex ratios, should more often express sex and should have higher genetic diversity than in regions with largely clonal reproduction. METHODS: We assessed reproductive status and phenotypic sex in the dioicous long-lived Drepanocladus trifarius and D. turgescens, in 248 and 438 samples across two regions in Scandinavia with frequent or rare realized sexual reproduction, respectively. In subsets of the samples, we analysed genetic diversity using nuclear and plastid sequence information and identified sex with a sex-specific molecular marker in non-reproductive samples. KEY RESULTS: Contrary to our predictions, sex ratios did not differ between regions; genetic diversity did not differ in D. trifarius and it was higher in the region with rare sexual reproduction in D. turgescens. Supporting our predictions, relatively more samples expressed sex in D. trifarius in the region with frequent sexual reproduction. Overall, samples were mostly female. The degree of sex expression and genetic diversity differed between sexes. CONCLUSIONS: Sex expression levels, regional sex ratios and genetic diversity were not directly associated with the regional frequency of realized sexual reproduction, and relationships and variation patterns differed between species. We conclude that a combination of species-specific life histories, such as longevity, overall degree of successful sexual reproduction and recruitment, and historical factors are important to explain this variation. Our data on haploid-dominated plants significantly complement plant reproductive biology.


Assuntos
Briófitas , Reprodução/genética , Fenótipo , Plantas/genética , Variação Genética
2.
Ann Bot ; 127(7): 903-908, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33608721

RESUMO

BACKGROUND AND AIMS: Horizontal gene transfer (HGT) is an important evolutionary mechanism because it transfers genetic material that may code for traits or functions between species or genomes. It is frequent in mitochondrial and nuclear genomes but has not been demonstrated between plastid genomes of different green land plant species. METHODS: We Sanger-sequenced the nuclear internal transcribed spacers (ITS1 and 2) and the plastid rpl16 G2 intron (rpl16). In five individuals with foreign rpl16 we also sequenced atpB-rbcL and trnLUAA-trnFGAA. KEY RESULTS: We discovered 14 individuals of a moss species with typical nuclear ITSs but foreign plastid rpl16 from a species of a distant lineage. None of the individuals with three plastid markers sequenced contained all foreign markers, demonstrating the transfer of plastid fragments rather than the entire plastid genome, i.e. entire plastids were not transferred. The two lineages diverged 165-185 Myr BP. The extended time interval since lineage divergence suggests that the foreign rpl16 is more likely explained by HGT than by hybridization or incomplete lineage sorting. CONCLUSIONS: We provide the first conclusive evidence of interspecific plastid-to-plastid HGT among land plants. Two aspects are critical: it occurred at several localities during the massive colonization of recently disturbed open habitats that were created by large-scale liming as a freshwater biodiversity conservation measure; and it involved mosses whose unique life cycle includes spores that first develop a filamentous protonema phase. We hypothesize that gene transfer is facilitated when protonema filaments of different species intermix intimately when colonizing disturbed early succession habitats.


Assuntos
Embriófitas , Genomas de Plastídeos , Evolução Molecular , Transferência Genética Horizontal , Genomas de Plastídeos/genética , Filogenia , Plastídeos/genética
3.
Mol Phylogenet Evol ; 105: 139-145, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27530707

RESUMO

As opposed to angiosperms, moss species richness is similar among tropical regions of the world, in line with the hypothesis that tropical bryophytes are extremely good dispersers. Here, we reconstructed the phylogeny of the pantropical moss genus Pelekium to test the hypothesis that high migration rates erase any difference in species richness among tropical regions. In contrast with this hypothesis, several species considered to have a pantropical range were resolved as a complex of species with a strong geographic structure. Consequently, a significant phylogeographical signal was found in the data, evidencing that cladogenetic diversification within regions takes place at a faster rate than intercontinental migration. The shape of the Pelekium phylogeny, along with the selection of a constant-rate model of diversification among species in the genus, suggests, however, that the cladogenetic speciation patterns observed in Pelekium are not comparable to some of the spectacular examples of tropical radiations reported in angiosperms. Rather, the results presented here point to the constant accumulation of diversity through time in Pelekium. This, combined with evidence for long-distance dispersal limitations in the genus, suggests that the similar patterns of species richness among tropical areas are better explained in terms of comparable rates of diversification across tropical regions than by the homogenization of species richness by recurrent migrations.


Assuntos
Evolução Biológica , Briófitas/classificação , Briófitas/genética , Especiação Genética , Magnoliopsida/classificação , Filogenia , Filogeografia
4.
J Plant Res ; 129(5): 1005-1010, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27262589

RESUMO

Sex identification before sexual maturity is notoriously difficult in plants with separate sexes, but is crucial to address many life history related issues. To study the performance of the two sexes in the rarely sexually reproducing dioecious moss Drepanocladus turgescens a molecular sex marker is needed. The female-targeting marker previously developed for D. trifarius and D. lycopodioides amplifies for a few D. turgescens males, which can thus not be distinguished from females. In a significant addition to the earlier developed method we sequenced the portion successfully amplified by the primers PT-3f and PT-3r for six females and three males. Differences between males and females were revealed at five sequence positions. Examination of a total of fourteen females and seven marker amplifying males confirm that females and such males differ consistently at these positions. The usefulness of a previous protocol for moss sex identification is thus extended to another dioecious moss by the addition of a step where a portion of the sex-correlated region is sequenced.


Assuntos
Briófitas/genética , Técnicas Genéticas , Sequência de Bases , Fertilidade/genética
5.
Ann Bot ; 116(5): 771-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26359424

RESUMO

BACKGROUND AND AIMS: Roughly half of the species of bryophytes have separate sexes (dioecious) and half are hermaphroditic (monoecious). This variation has major consequences for the ecology and evolution of the different species. In some sexually reproducing dioecious bryophytes, sex ratio has been shown to vary with environmental conditions. This study focuses on the dioecious wetland moss Drepanocladus trifarius, which rarely produces sexual branches or sporophytes and lacks apparent secondary sex characteristics, and examines whether genetic sexes exhibit different habitat preferences, i.e. whether sexual niche partitioning occurs. METHODS: A total of 277 shoots of D. trifarius were randomly sampled at 214 locations and 12 environmental factors were quantified at each site. Sex was assigned to the individual shoots collected in the natural environments, regardless of their reproductive status, using a specifically designed molecular marker associated with female sex. KEY RESULTS: Male and female shoots did not differ in shoot biomass, the sexes were randomly distributed with respect to each other, and environmental conditions at male and female sampling locations did not differ. Collectively, this demonstrates a lack of sexual niche segregation. Adult genetic sex ratio was female-biased, with 2·8 females for every male individual. CONCLUSIONS: The results show that although the sexes of D. trifarius did not differ with regard to annual growth, spatial distribution or habitat requirements, the genetic sex ratio was nevertheless significantly female-biased. This supports the notion that factors other than sex-related differences in reproductive costs and sexual dimorphism can also drive the evolution of biased sex ratios in plants.


Assuntos
Bryopsida/fisiologia , Ecossistema , Biomassa , Reprodução , Suécia
6.
Plants (Basel) ; 13(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38337977

RESUMO

Aloina catillum is a variable moss typical of xerophytic environments in the Neotropics, characterized against other closely allied Aloina species with well-differentiated leaf border by its setae twisted to the left throughout. In order to clarify its variability and its relationships with the allied species with differentiated leaf border A. brevirostris, A. obliquifolia, and A. rigida, we performed an integrative study including sequence data from four markers (nuclear ITS, plastid atpB-rbcL, trnG, trnL-F), morphometry, and species assembling by automatic partitioning (ASAP) algorithm. Our data suggest that A. catillum consists of at least three species: A. calceolifolia (an earlier name for A. catillum), and two species described here as a new, A. bracteata sp. nov. and A. limbata sp. nov. This latter species includes the specimens previously identified as A. obliquifolia from South America. Additionally, some morphological and molecular variability was also detected in A. limbata, but was not consistent enough to be recognized taxonomically. The study supports the presence of A. brevirostris in the Neotropics and A. rigida is tentatively excluded from South America. Full descriptions of the A. catillum s.l. species and a diagnostic key to this complex in South America are provided.

7.
Sci Total Environ ; 905: 167381, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37769738

RESUMO

Rapidly increasing temperatures in high-latitude regions are causing major changes in wetland ecosystems. To assess the impact of concomitant hydroclimatic fluctuations, mineral deposition, and autogenous succession on the rate and direction of changing arctic plant communities in Arctic Alaska, we conducted detailed palaeoecological analyses using plant macrofossil, pollen, testate amoebae, elemental analyses, and radiocarbon and lead (210Pb) dating on two replicate monoliths from a peatland that developed in a river valley on the northern foothills of the Books Range. We observed an expansion of Sphagnum populations and vascular plants preferring dry habitats, such as Sphagnum warnstorfii, Sphagnum teres/squarrosum, Polytrichum strictum, Aulacomnium palustre and Salix sp., in recent decades between 2000 and 2015 CE, triggered by an increase in temperature and deepening water tables. Deepening peatland water tables became accentuated over the last two decades, when it reached its lowest point in the last 700 years. Conversely, a higher water-table between ca. 1500 and 1950 CE led to a recession of Sphagnum communities and an expansion of sedges. The almost continuous supply of mineral matter during this time led to a dominance of minerotrophic plant communities, although with varying species composition throughout the study period. The replicate cores show similar patterns, but nuanced differences are also visible, depicting fine spatial scale differences particularly in peat-forming plant distribution and the different timings of their presence. In conclusion, our study provides valuable insights into the impact of hydroclimatic fluctuations on peatland vegetation in Arctic Alaska, highlighting their tendency to dry out in recent decades. It also highlights the importance of river valley peatlands in paleoenvironmental reconstructions.


Assuntos
Ecossistema , Sphagnopsida , Áreas Alagadas , Meio Ambiente , Solo , Plantas , Minerais
8.
Glob Chang Biol ; 18(9): 2915-24, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24501067

RESUMO

Bryophytes are a group of early land plants, whose specific ecophysiological and biological features, including poikilohydry, sensitivity to moderately high temperature and high dispersal ability, make them ideal candidates for investigating the impact of climate changes. Employing a combined approach of species distribution modelling (SDM) and molecular phylogeography in the temperate moss Homalothecium sericeum, we explore the significance of the Mediterranean refugia, contrasting the southern and northern refugia hypotheses, determine the extent to which recolonization of previously glaciated areas has been facilitated by the high dispersal ability of the species and make predictions on the extent to which it will be impacted by ongoing climate change. The Mediterranean areas exhibit the highest nucleotidic diversities and host a mixture of ancestral, endemic and more recently derived haplotypes. Extra-Mediterranean areas exhibit low genetic diversities and Euro-Siberian populations display a significant signal of expansion that is identified to be of Euro-Siberian origin, pointing to the northern refugia hypothesis. The SDMs predict a global net increase in range size owing to ongoing climate change, but substantial range reductions in southern areas. Presence of a significant phylogeographical signal at different spatial scales suggests, however, that dispersal limitations might constitute, as opposed to the traditional view of spore-producing plants as efficient dispersers, a constraint for migration. This casts doubts about the ability of the species to face the massive extinctions predicted in the southern areas, threatening their status of reservoir of genetic diversity.

9.
Proc Natl Acad Sci U S A ; 105(31): 10676-80, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18678903

RESUMO

A major obstacle in understanding the evolution of Cenozoic climate has been the lack of well dated terrestrial evidence from high-latitude, glaciated regions. Here, we report the discovery of exceptionally well preserved fossils of lacustrine and terrestrial organisms from the McMurdo Dry Valleys sector of the Transantarctic Mountains for which we have established a precise radiometric chronology. The fossils, which include diatoms, palynomorphs, mosses, ostracodes, and insects, represent the last vestige of a tundra community that inhabited the mountains before stepped cooling that first brought a full polar climate to Antarctica. Paleoecological analyses, (40)Ar/(39)Ar analyses of associated ash fall, and climate inferences from glaciological modeling together suggest that mean summer temperatures in the region cooled by at least 8 degrees C between 14.07 +/- 0.05 Ma and 13.85 +/- 0.03 Ma. These results provide novel constraints for the timing and amplitude of middle-Miocene cooling in Antarctica and reveal the ecological legacy of this global climate transition.


Assuntos
Clima , Ecossistema , Fósseis , Geologia , Animais , Regiões Antárticas , Briófitas/anatomia & histologia , Diatomáceas/citologia , Geografia , Fenômenos Geológicos , Invertebrados/anatomia & histologia
10.
Ecol Evol ; 11(22): 15846-15859, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824794

RESUMO

To understand colonization processes, it is critical to fully assess the role of dispersal in shaping biogeographical patterns at the gene, individual, population, and community levels. We test two alternative hypotheses (H I and H II) for the colonization of disturbed sites by clonal plants, by analyzing intraspecific genetic variation in one and reproductive traits in two typical fen mosses with separate sexes and intermittent spore dispersal, comparing disturbed, early-succession (limed) fens and late-successional rich fens. H I suggests initial colonization of disturbed sites by diverse genotypes of which fewer remain in late-successional fens and an initially balanced sex ratio that develops into a possibly skewed population sex ratio. H II suggests initial colonization by few genotypes and gradual accumulation of additional genotypes and an initially skewed sex ratio that alters into the species-specific sex ratio, during succession. Under both scenarios, we expect enhanced sexual reproduction in late-successional fens due to resource gains and decreased intermate distances when clones expand. We show that the intraspecific genetic diversity, assessed by two molecular markers, in Scorpidium cossonii was higher and the genetic variation among sites was smaller in disturbed than late-successional rich fens. Sex ratio was balanced in S. cossonii and Campylium stellatum in disturbed fens and skewed in C. stellatum in late-successional fens, thus supporting H I. In line with our prediction, sex expression incidence was higher in, and sporophytes were confined to, late-succession compared to disturbed rich fens. Late-successional S. cossonii sites had more within-site patches with two or more genotypes, and both species displayed higher sex expression levels in late-successional than in disturbed sites. We conclude that diverse genotypes and both sexes disperse efficiently to, and successfully colonize new sites, while patterns of genetic variation and sexual reproduction in late-successional rich fens are gradually shaped by local conditions and interactions over extended time periods.

11.
Nat Commun ; 10(1): 1485, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940807

RESUMO

Mosses are a highly diverse lineage of land plants, whose diversification, spanning at least 400 million years, remains phylogenetically ambiguous due to the lack of fossils, massive early extinctions, late radiations, limited morphological variation, and conflicting signal among previously used markers. Here, we present phylogenetic reconstructions based on complete organellar exomes and a comparable set of nuclear genes for this major lineage of land plants. Our analysis of 142 species representing 29 of the 30 moss orders reveals that relative average rates of non-synonymous substitutions in nuclear versus plastid genes are much higher in mosses than in seed plants, consistent with the emerging concept of evolutionary dynamism in mosses. Our results highlight the evolutionary significance of taxa with reduced morphologies, shed light on the relative tempo and mechanisms underlying major cladogenic events, and suggest hypotheses for the relationships and delineation of moss orders.


Assuntos
Briófitas/classificação , Briófitas/genética , Núcleo Celular/genética , Genoma de Planta , Genomas de Plastídeos , Filogenia , Plastídeos/genética , Evolução Molecular , Éxons
12.
J Hered ; 99(6): 581-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18502734

RESUMO

Most dioecious plants do not exhibit discernible sexual dimorphism before sexual maturity. Therefore, it is impossible to address any sex-related questions during the prereproductive phase unless a genetic sex marker is available for gender determination. The aim of the present study was to develop a genetic sex marker for the moss Pseudocalliergon trifarium to allow gender and sex ratio determination at any stage in the life cycle. A high proportion of P. trifarium populations do not express sex. The screening of genomic DNA with inter simple sequence repeat (ISSR) primers was used to discover sex-specific polymerase chain reaction (PCR) amplification products. A presumably female-specific band was found, excised from the gel, cloned, and sequenced. A sequence-walking method was used to characterize the same region in males. A primer pair was designed to allow the amplification of a 159-bp portion of the female-specific DNA region. All tested material, up to 16-year-old herbarium specimens, provided unambiguous amplification products. This study successfully provides, for the first time in a moss, a sex-specific DNA marker. It allows reliable determination of gender and sex ratios. The short length of the amplification product is an advantage as satisfactory PCR products are more likely when the targeted sequence is short. The amount of variation in the DNA region shared by both sexes was relatively high. If the male sequence can be better characterized, the sex-specific regions could possibly be used to evaluate sex-specific phylogeographic patterns.


Assuntos
Bryopsida/genética , Sequência de Bases , DNA de Plantas/genética , DNA de Plantas/metabolismo , Marcadores Genéticos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise para Determinação do Sexo , Especificidade da Espécie
13.
Ecol Evol ; 8(23): 11484-11491, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598750

RESUMO

Dispersal is a fundamental biological process that can be divided into three phases: release, transportation, and deposition. Determining the mechanisms of diaspore release is of prime importance to understand under which climatic conditions and at which frequency diaspores are released and transported. In mosses, wherein spore dispersal takes place through the hygroscopic movements of the peristome, the factors enhancing spore release has received little attention. Here, we determine the levels of relative humidity (RH) at which peristome movements are induced, contrasting the response of species with perfect (fully developed) and specialized (reduced) peristomes. All nine investigated species with perfect peristomes displayed a xerochastic behavior, initiating a closing movement from around 50%-65% RH upon increasing humidity and an opening movement from around 90% RH upon drying. Five of the seven species with specialized peristomes exhibited a hygrochastic behavior, initiating an opening movement under increasing RH (from about 80%) and a closing movement upon drying (from about 90%). These differences between species with hygrochastic and xerochastic peristomes suggest that spore dispersal does not randomly occur regardless of the prevailing climate conditions, which can impact their dispersal distances. In species with xerochastic peristomes, the release of spores under decreasing RH can be interpreted as an adaptive mechanism to disperse spores under optimal conditions for long-distance wind dispersal. In species with hygrochastic peristomes, conversely, the release of spores under wet conditions, which decreases their wind long-distance dispersal capacities, might be seen as a safe-site strategy, forcing spores to land in appropriate (micro-) habitats where their survival is favored. Significant variations were observed in the RH thresholds triggering peristome movements among species, especially in those with hygrochastic peristomes, raising the question of what mechanisms are responsible for such differences.

14.
PLoS One ; 11(5): e0156301, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27244582

RESUMO

Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae.


Assuntos
Briófitas/classificação , Hepatófitas/classificação , Âmbar/história , Briófitas/anatomia & histologia , Briófitas/genética , DNA de Plantas/genética , DNA de Plantas/história , Evolução Molecular , Extinção Biológica , Fósseis/anatomia & histologia , Fósseis/história , Hepatófitas/anatomia & histologia , Hepatófitas/genética , História Antiga , Índia , Filogenia , Fatores de Tempo
15.
PLoS One ; 7(10): e48268, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23118967

RESUMO

Adaptive evolution has often been proposed to explain correlations between habitats and certain phenotypes. In mosses, a high frequency of species with specialized sporophytic traits in exposed or epiphytic habitats was, already 100 years ago, suggested as due to adaptation. We tested this hypothesis by contrasting phylogenetic and morphological data from two moss families, Neckeraceae and Lembophyllaceae, both of which show parallel shifts to a specialized morphology and to exposed epiphytic or epilithic habitats. Phylogeny-based tests for correlated evolution revealed that evolution of four sporophytic traits is correlated with a habitat shift. For three of them, evolutionary rates of dual character-state changes suggest that habitat shifts appear prior to changes in morphology. This suggests that they could have evolved as adaptations to new habitats. Regarding the fourth correlated trait the specialized morphology had already evolved before the habitat shift. In addition, several other specialized "epiphytic" traits show no correlation with a habitat shift. Besides adaptive diversification, other processes thus also affect the match between phenotype and environment. Several potential factors such as complex genetic and developmental pathways yielding the same phenotypes, differences in strength of selection, or constraints in phenotypic evolution may lead to an inability of phylogeny-based comparative methods to detect potential adaptations.


Assuntos
Adaptação Fisiológica/genética , Briófitas/genética , Briófitas/fisiologia , Diploide , Filogenia , Briófitas/anatomia & histologia , Ecossistema , Evolução Molecular
16.
Am J Bot ; 95(6): 720-30, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21632398

RESUMO

Competing hypotheses that rely either on a stepping-stone dispersal via the North Atlantic or the Bering land bridges, or more recent transoceanic dispersal, have been proposed to explain the disjunct distribution of Mediterranean flora in southern Europe and western North America. These hypotheses were tested with molecular dating using a phylogeny of the moss genus Homalothecium based on ITS, atpB-rbcL, and rpl16 sequence data. The monophyly of two main lineages in Western Palearctic (Europe, central Asia and north Africa) and North America is consistent with the ancient vicariance hypothesis. The monophyly of Madeiran H. sericeum accessions supports the recognition of the Macaronesian endemic H. mandonii. A range of absolute rates of molecular evolution documented in land plants was used as probabilistic calibration prior by a Bayesian inference implementing a relaxed-clock model to derive ages for the nodes of interest. Our age estimates for the divergence of the American and Western Palearctic Homalothecium clade (5.7 Ma, IC 3.52-8.26) and the origin of H. mandonii (2.52 Myr IC 0.86-8.25) are not compatible with the ancient vicariance hypothesis. Age estimates suggests that species distributions result from rare instances of dispersal and subsequent sympatric diversification. The calibrated phylogeny indicates that Homalothecium has undergone a fast radiation during the last 4 Myr, which is consistent with the low levels of morphological divergence among sibling species.

17.
Mol Phylogenet Evol ; 42(3): 700-16, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17101281

RESUMO

During the identification of Moroccan samples a plant belonging to Isothecium with characteristics of I. alopecuroides (Dubois) Isov. and, to a smaller degree, I. algarvicum W.E. Nicholson and Dixon was found. Problems with attributing the plant to any of the European Isothecium species and the known large morphological variation in I. alopecuroides suggested that molecular studies were needed to evaluate patterns of relationships in this complex. We investigated one nuclear and one chloroplast marker from 66 samples (gametophytes) of Isothecium alopecuroides and from 18 samples of other Isothecium species. Parsimony and likelihood (via Bayesian analysis) were used as optimality criteria to compute phylogenetic trees. Bootstrapping and posterior probabilities were used, not only to quantify support, but also to evaluate competing phylogenetic alternatives in consensus networks. Finally, split decomposition and neighbour net analysis were used to compute distance based split networks, in order to avoid systematic error. The observed discrepancy among morphological and molecular data suggests that none of the European species Isothecium alopecuroides, I. holtii and I. myosuroides are monophyletic as defined by traditional morphological characters. Convergent morphological evolution cannot explain the discrepancy in this particular case; instead exchange of genetic material among Isothecium species is considered a potential explanation for the molecular diversity within morphospecies.


Assuntos
Briófitas/anatomia & histologia , Briófitas/genética , Evolução Molecular , Sequência de Bases , Europa (Continente) , Genes de Plantas , Especiação Genética , Dados de Sequência Molecular , Fenótipo , Filogenia , Homologia de Sequência do Ácido Nucleico
18.
Am J Bot ; 93(9): 1313-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21642196

RESUMO

A fundamental assumption in life-history theory is that reproduction is costly. Higher reproductive investment for fruits than for flowers may result in larger costs of reproduction in females than in males, which is often used to explain male-skewed sex ratios in unisexual seed plants. In contrast, bryophytes have predominantly female-biased sex ratios, suggested to be a product of a higher average cost of sexual reproduction in males. Empirical evidence to support this notion is largely lacking. We investigated sex-specific reproductive effort and costs in the unisexual moss Pseudocalliergon trifarium that has a female-dominated expressed sex ratio and rarely produces sporophytes. Annual vegetative segment mass did not differ among male, female, and non-expressing individuals, indicating that there was no threshold-size for sex expression. Mean and annual mass of sexual branches were higher in females than in males, but branch number per segment did not differ between sexes. Prefertilization reproductive effort for females was significantly greater (11.2%) than for males (8.6%). No cost for sexual branch production in terms of reduced relative vegetative growth or decreased investment in reproductive structures in consecutive years was detected. A higher realized reproductive cost in males cannot explain the unbalanced sex ratio in the study species.

19.
Mol Phylogenet Evol ; 23(1): 1-21, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12182399

RESUMO

To circumscribe the moss family Amblystegiaceae, we performed a broad-scale analysis of trnL-trnF spacer sequence data for 168 species of the Hypnales and 11 species of the Hookeriales and additional analyses of trnL-trnF and atpB-rbcL (chloroplast DNA), one nuclear region, the internal transcribed spacers of 18S-26S rDNA, and 68 morphological characters for a reduced data set of 54 species of Hypnales. The traditionally circumscribed Amblystegiaceae are polyphyletic and include the Amblystegiaceae s. str. and the Calliergonaceae fam. nov., plus several taxa closely related to other Hypnalean families. Generic relationships within the redefined Amblystegiaceae were investigated by analyzing data from the three DNA regions and morphology as used in the broader analysis. Reconstruction of morphological evolution was evaluated using maximum-parsimony and maximum-likelihood. Numerous independent character-state transitions implied by the phylogeny suggest that morphological characters that have traditionally been used to delineate the Amblystegiaceae are homoplastic. Sporophytic traits, which are generally given primacy over gametophytic traits in moss classification, are more labile than previously thought, and many characters that are related to sporophyte specializations are strongly correlated with habitat conditions. The evolution of several gametophyte features previously thought to be reliable for delineating the family are also strongly correlated with habitat. These observations help to explain the instability of the Amblystegiaceae in previous taxonomic and phylogenetic analyses based on morphology.


Assuntos
Bryopsida/genética , Evolução Molecular , Filogenia , Bryopsida/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA