Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 4144-4152, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315569

RESUMO

Circularly polarized light-emitting diodes (CP-LEDs) are critical for next-generation optical technologies, ranging from holography to quantum information processing. Currently deployed chiral luminescent materials, with their intricate synthesis and processing and limited efficiency, are the main bottleneck for CP-LEDs. Chiral metal nanoclusters (MNCs) are potential CP-LED materials, given their ease of synthesis and processability as well as diverse structures and excited states. However, their films are usually plagued by inferior electronic quality and aggregation-caused photoluminescence quenching, necessitating their incorporation into host materials; without such a scheme, MNC-based LEDs exhibit external quantum efficiencies (EQEs) < 10%. Herein, we achieve an efficiency leap for both CP-LEDs and cluster-based LEDs by using novel chiral MNCs with aggregation-induced emission enhancement. CP-LEDs using enantiopure MNC films attain EQEs of up to 23.5%. Furthermore, by incorporating host materials, the devices yield record EQEs of up to 36.5% for both CP-LEDs and cluster-based LEDs, along with electroluminescence dissymmetry factors (|gEL|) of around 1.0 × 10-3. These findings open a new avenue for advancing chiral light sources for next-generation optoelectronics.

2.
Small ; 19(36): e2208253, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37183297

RESUMO

MXenes, a fast-growing family of two-dimensional (2D) transition metal carbides/nitrides, are promising for electronics and energy storage applications. Mo2 CTx MXene, in particular, has demonstrated a higher capacity than other MXenes as an anode for Li-ion batteries. Yet, such enhanced capacity is accompanied by slow kinetics and poor cycling stability. Herein, it is revealed that the unstable cycling performance of Mo2 CTx is attributed to the partial oxidation into MoOx with structural degradation. A laser-induced Mo2 CTx /Mo2 C (LS-Mo2 CTx ) hybrid anode has been developed, of which the Mo2 C nanodots boost redox kinetics, and the laser-reduced oxygen content prevents the structural degradation caused by oxidation. Meanwhile, the strong connections between the laser-induced Mo2 C nanodots and Mo2 CTx nanosheets enhance conductivity and stabilize the structure during charge-discharge cycling. The as-prepared LS-Mo2 CTx anode exhibits an enhanced capacity of 340 mAh g-1 vs 83 mAh g-1 (for pristine) and an improved cycling stability (capacity retention of 106.2% vs 80.6% for pristine) over 1000 cycles. The laser-induced synthesis approach underlines the potential of MXene-based hybrid materials for high-performance energy storage applications.

3.
Small ; : e2306535, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063843

RESUMO

Colloidal quantum dots (CQDs) are emerging materials for short-wave infrared (SWIR, ≈1100-3000 nm) photodetectors, which are technologically important for a broad array of applications. Unfortunately, the most developed SWIR CQD systems are Pb and Hg chalcogenides; their toxicity and regulated compositions limit their applications. InSb CQD system is a potential environmentally friendly alternative, whose bandgap in theory, is tunable via quantum confinement across the SWIR spectrum. However, InSb CQDs are difficult to exploit, due to their complex syntheses and uncommon reactive precursors, which greatly hinder their application and study. Here, a one-pot synthesis strategy is reported using commercially available precursors to synthesize-under standard colloidal synthesis conditions-high-quality, size-tunable InSb CQDs. With this strategy, the large Bohr exciton radius of InSb can be exploited for tuning the bandgap of the CQDs over a wide range of wavelengths (≈1250-1860 nm) across the SWIR region. Furthermore, by changing the surface ligands of the CQDs from oleic acid (OA) to 1-dodecanthiol (DDT), a ≈20-fold lengthening in the excited-state lifetime, efficient carrier multiplication, and slower carrier annihilation are observed. The work opens a wide range of SWIR applications to a promising class of Pb- and Hg-free CQDs.

4.
Angew Chem Int Ed Engl ; 62(26): e202303572, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37130272

RESUMO

Point defects in nanoparticles have long been hypothesized to play an important role in governing the particle's electronic structure and physicochemical properties. However, single point defects in material systems usually exist with other heterogeneities, obscuring the chemical role of the effects. Herein, we report the synthesis of novel atomically precise, copper hydride nanoclusters (NCs), [Cu28 H10 (C7 H7 S)18 (TPP)3 ] (Cu28 ; TPP: triphenylphosphine; C7 H7 S: o-thiocresol) with a defined defect in the gram scale via a one-pot reduction method. The Cu28 acts as a highly selective catalyst for C-C cross-couplings. The work highlights the potential of defective NCs as model systems for investigating individual defects, correlating defects with physiochemical properties, and rationally designing new nanoparticle catalysts.


Assuntos
Cobre , Nanopartículas , Eletrônica , Modelos Biológicos
5.
Angew Chem Int Ed Engl ; 61(51): e202212941, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36282179

RESUMO

The popular metal-ion batteries (MIBs) suffer from environmental and economic issues because of their heavy dependency on nonrenewable metals. Here, we propose a metal-free ammonium (NH4 + )-based dual-ion battery with a record-breaking operation voltage of 2.75 V. The working mechanism of this sustainable battery involves the reversible anion (PF6 - ) intercalation chemistry in graphite cathode and NH4 + intercalation behavior in PTCDI (3,4,9,10-perylenetetracarboxylic diimide) anode. This new battery configuration successfully circumvented the reduction susceptibility of NH4 + and the lack of mature NH4 + -rich cathodes for NH4 + ion batteries (AIBs). The customized organic NH4 + electrolyte endows the graphite||PTCDI full battery with durable longevity (over 1000 cycles) and a high energy density (200 Wh kg-1 ). We show that the development of AIBs should be high-voltage-oriented while circumventing low operation potential to avoid NH4 + reduction.

6.
J Am Chem Soc ; 143(29): 11026-11035, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34255513

RESUMO

Precise identification and in-depth understanding of defects in nanomaterials can aid in rationally modulating defect-induced functionalities. However, few studies have explored vacancy defects in ligand-stabilized metal nanoclusters with well-defined structures, owing to the substantial challenge of synthesizing and isolating such defective metal nanoclusters. Herein, a novel defective copper hydride nanocluster, [Cu36H10(PET)24(PPh3)6Cl2] (Cu36; PET: phenylethanethiolate; PPh3: triphenylphosphine), is successfully synthesized at the gram scale via a simple one-pot reduction method. Structural analysis reveals that Cu36 is a distorted half cubic nanocluster, evolved from the perfect Nichol's half cube. The two surface copper vacancies in Cu36 are found to be the principal imperfections, which result in some structural adjustments, including copper atom reconstruction near the vacancies as well as ligand modifications (e.g., substitution, migration, and exfoliation). Density functional theory calculations imply that the above-mentioned defects have a considerable influence on the electronic structure and properties. The modeling suggests that the formation of defective Cu36 rather than the perfect half cube is driven by the enlargement of the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of the nanocluster. The structural evolution induced by the surface copper atom vacancies provides atomically precise insights into the defect-induced readjustment of the local structure and introduces new avenues for understanding the chemistry of defects in nanomaterials.

7.
Small ; 17(27): e2006839, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33739606

RESUMO

Due to their atomically precise structure, photoluminescent copper nanoclusters (Cu NCs) have emerged as promising materials in both fundamental studies and technological applications, such as bio-imaging, cell labeling, phototherapy, and photo-activated catalysis. In this work, a facile strategy is reported for the synthesis of a novel Cu NCs coprotected by thiolate and phosphine ligands, formulated as [Cu15 (PPh3 )6 (PET)13 ]2+ , which exhibits bright emission in the near-infrared (NIR) region (≈720 nm) and crystallization-induced emission enhancement (CIEE) phenomenon. Single crystal X-ray crystallography shows that the NC possesses an extraordinary distorted trigonal antiprismatic Cu6 core and a, unique among metal clusters, "tri-blade fan"-like structure. An in-depth structural investigation of the ligand shell combined with density functional theory calculations reveal that the extended CH···π and π-π intermolecular ligand interactions significantly restrict the intramolecular rotations and vibrations and, thus, are a major reason for the CIEE phenomena. This study provides a strategy for the controllable synthesis of structurally defined Cu NCs with NIR luminescence, which enables essential insights into the origins of their optical properties.


Assuntos
Cobre , Luminescência , Cristalização , Ligantes , Tomografia por Emissão de Pósitrons
8.
J Am Chem Soc ; 142(19): 8696-8705, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32315164

RESUMO

Copper-based nanomaterials have attracted tremendous interest due to their unique properties in the fields of photoluminescence and catalysis. As a result, studies on the correlation between their molecular structure and their properties are of great importance. Copper nanoclusters are a new class of nanomaterials that can provide an atomic-level view of the crystal structure of copper nanoparticles. Herein, a high-nuclearity copper nanocluster with 81 copper atoms, formulated as [Cu81(PhS)46(tBuNH2)10(H)32]3+ (Cu81), was successfully synthesized and fully studied by X-ray crystallography, X-ray photoelectron spectroscopy, hydrogen evolution experiments, electrospray ionization mass spectrometry, nuclear magnetic resonance spectroscopy, and density functional theory calculations. Cu81 exhibits extraordinary structural characteristics, including (i) three types of novel epitaxial surface-protecting motifs; (ii) an unusual planar Cu17 core; (iii) a hemispherical shell, comprised of a curved surface layer and a planar surface layer; and (iv) two distinct, self-organized arrangements of protective ligands on the curved and planar surfaces. The present study sheds light on structurally unexplored copper nanomaterials and paves the way for the synthesis of high-nuclearity copper nanoclusters.

9.
Nano Lett ; 19(6): 3535-3542, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31009227

RESUMO

Semiconductor quantum well structures have been critical to the development of modern photonics and solid-state optoelectronics. Quantum level tunable structures have introduced new transformative device applications and afforded a myriad of groundbreaking studies of fundamental quantum phenomena. However, noncolloidal, III-V compound quantum well structures are limited to traditional semiconductor materials fabricated by stringent epitaxial growth processes. This report introduces artificial multiple quantum wells (MQWs) built from CsPbBr3 perovskite materials using commonly available thermal evaporator systems. These perovskite-based MQWs are spatially aligned on a large-area substrate with multiple stacking and systematic control over well/barrier thicknesses, resulting in tunable optical properties and a carrier confinement effect. The fabricated CsPbBr3 artificial MQWs can be designed to display a variety of photoluminescence (PL) characteristics, such as a PL peak shift commensurate with the well/barrier thickness, multiwavelength emissions from asymmetric quantum wells, the quantum tunneling effect, and long-lived hot-carrier states. These new artificial MQWs pave the way toward widely available semiconductor heterostructures for light-conversion applications that are not restricted by periodicity or a narrow set of dimensions.

10.
J Am Chem Soc ; 141(24): 9585-9592, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31135146

RESUMO

Here, we demonstrate an approach to synthesizing and structurally characterizing three atomically precise anion-templated silver thiolate nanoclusters, two of which form one- and two-dimensional structural frameworks composed of bipyridine-linked nanocluster nodes (referred to as nanocluster-based frameworks, NCFs). We describe the critical role of the chloride (Cl-) template in controlling the nanocluster's nuclearity with atomic precision and the effect of a single Ag atom difference in the nanocluster's size in controlling the NCF dimensionality, modulating the optical properties, and improving the thermal stability. With atomically precise assembly and size control, nanoclusters could be widely adopted as building blocks for the construction of tunable cluster-based framework materials.

11.
Angew Chem Int Ed Engl ; 58(49): 17849-17855, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31574196

RESUMO

MXenes are a class of two-dimensional (2D) transition metal carbides, nitrides and carbonitrides that have shown promise for high-rate pseudocapacitive energy storage. However, the effects that irreversible oxidation have on the surface chemistry and electrochemical properties of MXenes are still not understood. Here we report on a controlled anodic oxidation method which improves the rate performance of titanium carbide MXene (Ti3 C2 Tx, Tx refers to -F, =O, -Cl and -OH) electrodes in acidic electrolytes. The capacitance retention at 2000 mV s-1 (with respect to the lowest scan rate of 5 mV s-1 ) increases gradually from 38 % to 66 % by tuning the degree of anodic oxidation. At the same time, a loss in the redox behavior of Ti3 C2 Tx is evident at high anodic potentials after oxidation. Several analysis methods are employed to reveal changes in the structure and surface chemistry while simultaneously introducing defects, without compromising electrochemically active sites, are key factors for improving the rate performance of Ti3 C2 Tx . This study demonstrates improvement of the electrochemical performance of MXene electrodes by performing a controlled anodic oxidation.

12.
J Am Chem Soc ; 140(2): 562-565, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29249159

RESUMO

Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a postsynthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2'-iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the nonpassivated NCs.

13.
J Am Chem Soc ; 139(2): 731-737, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27977176

RESUMO

Since compelling device efficiencies of perovskite solar cells have been achieved, investigative efforts have turned to understand other key challenges in these systems, such as engineering interfacial energy-level alignment and charge transfer (CT). However, these types of studies on perovskite thin-film devices are impeded by the morphological and compositional heterogeneity of the films and their ill-defined surfaces. Here, we use well-defined ligand-protected perovskite nanocrystals (NCs) as model systems to elucidate the role of heterovalent doping on charge-carrier dynamics and energy level alignment at the interface of perovskite NCs with molecular acceptors. More specifically, we develop an in situ doping approach for colloidal CsPbBr3 perovskite NCs with heterovalent Bi3+ ions by hot injection to precisely tune their band structure and excited-state dynamics. This synthetic method allowed us to map the impact of doping on CT from the NCs to different molecular acceptors. Using time-resolved spectroscopy with broadband capability, we clearly demonstrate that CT at the interface of NCs can be tuned and promoted by metal ion doping. We found that doping increases the energy difference between states of the molecular acceptor and the donor moieties, subsequently facilitating the interfacial CT process. This work highlights the key variable components not only for promoting interfacial CT in perovskites, but also for establishing a higher degree of precision and control over the surface and the interface of perovskite molecular acceptors.

14.
J Am Chem Soc ; 139(30): 10232-10238, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27775320

RESUMO

Toroidal structures based on self-assembly of predesigned building blocks are well-established in the literature, but spontaneous self-organization to prepare such structures has not been reported to date. Here, organic-inorganic hybrid microtoroids synthesized by simultaneous coordination-driven assembly of amphiphilic molecules and hydrophilic polymers are reported. Mixing amphiphilic molecules with iron(III) chloride and hydrophilic polymers in water leads, within minutes, to the formation of starlike nanostructures. A spontaneous self-organization of these nanostructures is then triggered to form stable hybrid microtoroids. Interestingly, the toroids exhibit anisotropic hierarchical growth, giving rise to a layered toroidal framework. These microstructures are mechanically robust and can act as templates to host metallic nanoparticles such as gold and silver. Understanding the nature of spontaneous assembly driven by coordination multiple non-covalent interactions can help explain the well-ordered complexity of many biological organisms in addition to expanding the available tools to mimic such structures at a molecular level.

15.
J Am Chem Soc ; 139(3): 1053-1056, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28064484

RESUMO

Atomically precise self-assembled architectures of noble metals with unique surface structures are necessary for prospective applications. However, the synthesis of such structures based on silver is challenging because of their instability. In this work, by developing a selective and controlled doping strategy, we synthesized and characterized a rod-shaped, charge-neutral, diplatinum-doped Ag nanocluster (NC) of [Pt2Ag23Cl7(PPh3)10]. Its crystal structure revealed the self-assembly of two Pt-centered Ag icosahedra through vertex sharing. Five bridging and two terminal chlorides and 10 PPh3 ligands were found to stabilize the cluster. Electronic structure simulations corroborated structural and optical characterization of the cluster and provided insights into the effect of the Pt dopants on the optical properties and stability of the cluster. Our study will open new avenues for designing novel self-assembled NCs using different elemental dopants.

16.
J Am Chem Soc ; 138(42): 13770-13773, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27718553

RESUMO

Thiols and phosphines are the most widely used organic ligands to attain atomically precise metal nanoclusters (NCs). Here, we used simple hydrides (e.g., H-) as ligands along with phosphines, such as triphenylphosphine (TPP), 1,2-bis(diphenylphosphino)ethane [DPPE], and tris(4-fluorophenyl)phosphine [TFPP] to design and synthesize a new class of hydride-rich silver NCs. This class includes [Ag18H16(TPP)10]2+, [Ag25H22(DPPE)8]3+, and [Ag26H22(TFPP)13]2+. Our work reveals a new family of atomically precise NCs protected by H- ligands and labile phosphines, with potentially more accessible active metal sites for functionalization and provides a new set of stable NC sizes with simpler ligand-metal bonding for researchers to explore both experimentally and computationally.

17.
Nanotechnology ; 27(36): 365709, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27483338

RESUMO

We present a study on the properties of iron (Fe)-doped and carbon (C)-coated titania (TiO2) nanoparticles (NPs) which has been compiled by using x-ray diffraction (XRD), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). These TiO2 NPs were prepared by using the flame synthesis method. This method allows the simultaneous C coating and Fe doping of TiO2 NPs. XRD investigations revealed that the phase of the prepared NPs was anatase TiO2. Conventional TEM analysis showed that the average size of the TiO2 NPs was about 65 nm and that the NPs were uniformly coated with the element C. Furthermore, from the x-ray energy dispersive spectrometry analysis, it was found that about 8 at.% Fe was present in the synthesized samples. High-resolution TEM (HRTEM) revealed the graphitized carbon structure of the layer surrounding the prepared TiO2 NPs. HRTEM analysis further revealed that the NPs possessed the crystalline structure of anatase titania. Energy-filtered TEM (EFTEM) analysis showed the C coating and Fe doping of the NPs. The ratio of L3 and L2 peaks for the Ti-L23 and Fe-L23 edges present in the core loss electron energy loss spectroscopy (EELS) revealed a +4 oxidation state for the Ti and a +3 oxidation state for the Fe. These EELS results were further confirmed with XPS analysis. The electronic properties of the samples were investigated by applying Kramers-Kronig analysis to the low-loss EELS spectra acquired from the prepared NPs. The presented results showed that the band gap energy of the TiO2 NPs decreased from an original value of 3.2 eV to about 2.2 eV, which is quite close to the ideal band gap energy of 1.65 eV for photocatalysis semiconductors. The observed decrease in band gap energy of the TiO2 NPs was attributed to the presence of Fe atoms at the lattice sites of the anatase TiO2 lattice. In short, C-coated and Fe-doped TiO2 NPs were synthesized with a rather cost-effective and comparatively easily scalable method. The presented analysis enables us to predict the excellent efficiency of these NPs for solar-cell and photo-catalysis applications.

18.
Small ; 11(34): 4341-50, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26061915

RESUMO

It is demonstrated for the first time that surface passivation of 2D nanosheets of MoS2 by an ultrathin and uniform layer of HfO2 can significantly improve the cyclic performance of sodium ion batteries. After 50 charge/discharge cycles, bare MoS2 and HfO2 coated MoS2 electrodes deliver the specific capacity of 435 and 636 mAh g(-1) , respectively, at current density of 100 mA g(-1) . These results imply that batteries using HfO2 coated MoS2 anodes retain 91% of the initial capacity; in contrast, bare MoS2 anodes retain only 63%. Also, HfO2 coated MoS2 anodes show one of the highest reported capacity values for MoS2 . Cyclic voltammetry and X-ray photoelectron spectroscopy results suggest that HfO2 does not take part in electrochemical reaction. The mechanism of capacity retention with HfO2 coating is explained by ex situ transmission electron microscope imaging and electrical impedance spectroscopy. It is illustrated that HfO2 acts as a passivation layer at the anode/electrolyte interface and prevents structural degradation during charge/discharge process. Moreover, the amorphous nature of HfO2 allows facile diffusion of Na ions. These results clearly show the potential of HfO2 coated MoS2 anodes, which performance is significantly higher than previous reports where bulk MoS2 or composites of MoS2 with carbonaceous materials are used.

19.
Small ; 11(39): 5214-21, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26270384

RESUMO

Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here, a new synthetic strategy is reported that enables the epitaxial growth of a homogeneously alloyed AuAg shell on Au nanorod seeds, circumventing the phase segregation of Au and Ag encountered in conventional synthesis. The resulting core-shell structured bimetallic nanorods (AuNR@AuAg) have well-mixed Au and Ag atoms in their shell without discernible domains. This degree of mixing allows AuNR@AuAg to combine the high stability of Au with the superior plasmonic activity of Ag, thus outperforming seemingly similar nanostructures with monometallic shells (e.g., Ag-coated Au NRs (AuNR@Ag) and Au-coated Au NRs (AuNR@Au)). AuNR@AuAg is comparable to AuNR@Ag in plasmonic activity, but that it is markedly more stable toward oxidative treatment. Specifically, AuNR@AuAg and AuNR@Ag exhibit similarly strong signals in surface-enhanced Raman spectroscopy that are some 30-fold higher than that of AuNR@Au. When incubated with a H(2)O(2) solution (0.5 m), the plasmonic activity of AuNR@Ag immediately and severely decayed, whereas AuNR@AuAg retained its activity intact. Moreover, the longitudinal SPR frequency of AuNR@AuAg can be tuned throughout the red wavelengths (≈620-690 nm) by controlling the thickness of the AuAg alloy shell. The synthetic strategy is versatile to fabricate AuAg alloyed shells on different shaped Au, with prospects for new possibilities in the synthesis and application of plasmonic nanocrystals.

20.
Phys Chem Chem Phys ; 17(2): 1001-9, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25410936

RESUMO

Efficient photocatalytic hydrogen generation in a suspension system requires a sophisticated nano-device that combines a photon absorber with effective redox catalysts. This study demonstrates an innovative molecular linking strategy for fabricating photocatalytic materials that allow effective charge separation of excited carriers, followed by efficient hydrogen evolution. The method for the sequential replacement of ligands with appropriate molecules developed in this study tethers both quantum dots (QDs), as photosensitizers, and metal nanoparticles, as hydrogen evolution catalysts, to TiO2 surfaces in a controlled manner at the nano-level. Combining hydrophobic and hydrophilic interactions on the surface, CdSe-ZnS core-shell QDs and an Au-Pt alloy were attached to TiO2 without overlapping during the synthesis. The resultant nano-photocatalysts achieved substantially high-performance visible-light-driven photocatalysis for hydrogen evolution. All syntheses were conducted at room temperature and in ambient air, providing a promising route for fabricating visible-light-responsive photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA