Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Chem Rev ; 122(10): 9795-9847, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35446555

RESUMO

Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.


Assuntos
Núcleo Celular , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos
2.
Phys Chem Chem Phys ; 26(6): 5669-5682, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38288878

RESUMO

Two polarizing agents from the AsymPol family, AsymPol-TEK and cAsymPol-TEK (methyl-free version) are introduced for MAS-DNP applications in non-aqueous solvents. The performance of these new biradicals is rationalized in detail using a combination of electron paramagnetic resonance spectroscopy, density functional theory, molecular dynamics and quantitative MAS-DNP spin dynamics simulations. By slightly modifying the experimental protocol to keep the sample temperature low at insertion, we are able to obtain reproducable DNP-NMR data with 1,1,2,2-tetrachloroethane (TCE) at 100 K, which facilitates optimization and comparison of different polarizing agents. At intermediate magnetic fields, AsymPol-TEK and cAsymPol-TEK provide 1.5 to 3-fold improvement in sensitivity compared to TEKPol, one of the most widely used polarizing agents for organic solvents, with significantly shorter DNP build-up times of ∼1 s and ∼2 s at 9.4 and 14.1 T respectively. In the course of the work, we also isolated and characterized two diastereoisomers that can form during the synthesis of AsymPol-TEK; their difference in performance is described and discussed. Finally, the advantages of the AsymPol-TEKs are demonstrated by recording 2D 13C-13C correlation experiments at natural 13C-abundance of proton-dense microcrystals and by polarizing the surface of ZnO nanocrystals (NCs) coated with diphenyl phosphate ligands. For those experiments, cAsymPol-TEK yielded a three-fold increase in sensitivity compared to TEKPol, corresponding to a nine-fold time saving.

3.
Solid State Nucl Magn Reson ; 123: 101850, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592488

RESUMO

We show that multidimensional solid-state NMR 13C-13C correlation spectra of biomolecular assemblies and microcrystalline organic molecules can be acquired at natural isotopic abundance with only milligram quantities of sample. These experiments combine fast Magic Angle Spinning of the sample, low-power dipolar recoupling, and dynamic nuclear polarization performed with AsymPol biradicals, a recently introduced family of polarizing agents. Such experiments are essential for structural characterization as they provide short- and long-range distance information. This approach is demonstrated on diverse sample types, including polyglutamine fibrils implicated in Huntington's disease and microcrystalline ampicillin, a small antibiotic molecule.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos
4.
Angew Chem Int Ed Engl ; 61(12): e202114103, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35019217

RESUMO

Efficiently hyperpolarizing proton-dense molecular solids through dynamic nuclear polarization (DNP) solid-state NMR is still an unmet challenge. Polarizing agents (PAs) developed so far do not perform well on proton-rich systems, such as organic microcrystals and biomolecular assemblies. Herein we introduce a new PA, cAsymPol-POK, and report outstanding hyperpolarization efficiency on 12.76 kDa U-13 C,15 N-labeled LecA protein and pharmaceutical drugs at high magnetic fields (up to 18.8 T) and fast magic angle spinning (MAS) frequencies (up to 40 kHz). The performance of cAsymPol-POK is rationalized by MAS-DNP simulations combined with electron paramagnetic resonance (EPR), density functional theory (DFT) and molecular dynamics (MD). This work shows that this new biradical is compatible with challenging biomolecular applications and unlocks the rapid acquisition of 13 C-13 C and 15 N-13 C correlations of pharmaceutical drugs at natural isotopic abundance, which are key experiments for structure determination.


Assuntos
Prótons , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Preparações Farmacêuticas
5.
Phys Chem Chem Phys ; 23(24): 13768-13769, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34115087

RESUMO

Correction for 'De novo prediction of cross-effect efficiency for magic angle spinning dynamic nuclear polarization' by Frédéric Mentink-Vigier et al., Phys. Chem. Chem. Phys., 2019, 21, 2166-2176, DOI: 10.1039/C8CP06819D.

6.
Phys Chem Chem Phys ; 21(4): 2166-2176, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30644474

RESUMO

Magic angle spinning dynamic nuclear polarization (MAS-DNP) has become a key approach to boost the intrinsic low sensitivity of NMR in solids. This method relies on the use of both stable radicals as polarizing agents (PAs) and suitable high frequency microwave irradiation to hyperpolarize nuclei of interest. Relating PA chemical structure to DNP efficiency has been, and is still, a long-standing problem. The complexity of the polarization transfer mechanism has so far limited the impact of analytical derivation. However, recent numerical approaches have profoundly improved the basic understanding of the phenomenon and have now evolved to a point where they can be used to help design new PAs. In this work, the potential of advanced MAS-DNP simulations combined with DFT calculations and high-field EPR to qualitatively and quantitatively predict hyperpolarization efficiency of particular PAs is analyzed. This approach is demonstrated on AMUPol and TEKPol, two widely-used bis-nitroxide PAs. The results notably highlight how the PA structure and EPR characteristics affect the detailed shape of the DNP field profile. We also show that refined simulations of this profile using the orientation dependency of the electron spin-lattice relaxation times can be used to estimate the microwave B1 field experienced by the sample. Finally, we show how modelling the nuclear spin-lattice relaxation times of close and bulk nuclei while accounting for PA concentration allows for a prediction of DNP enhancement factors and hyperpolarization build-up times.

7.
J Am Chem Soc ; 140(35): 11013-11019, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30095255

RESUMO

We introduce a new family of highly efficient polarizing agents for dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) applications, composed of asymmetric bis-nitroxides, in which a piperidine-based radical and a pyrrolinoxyl or a proxyl radical are linked together. The design of the AsymPol family was guided by the use of advanced simulations that allow computation of the impact of the radical structure on DNP efficiency. These simulations suggested the use of a relatively short linker with the intention to generate a sizable intramolecular electron dipolar coupling/ J-exchange interaction, while avoiding parallel nitroxide orientations. The characteristics of AsymPol were further tuned, for instance with the addition of a conjugated carbon-carbon double bond in the 5-membered ring to improve the rigidity and provide a favorable relative orientation, the replacement of methyls by spirocyclohexanolyl groups to slow the electron spin relaxation, and the introduction of phosphate groups to yield highly water-soluble dopants. An in-depth experimental and theoretical study for two members of the family, AsymPol and AsymPolPOK, is presented here. We report substantial sensitivity gains at both 9.4 and 18.8 T. The robust efficiency of this new family is further demonstrated through high-resolution surface characterization of an important industrial catalyst using fast sample spinning at 18.8 T. This work highlights a new direction for polarizing agent design and the critical importance of computations in this process.


Assuntos
Desenho Assistido por Computador , Compostos Orgânicos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Orgânicos/síntese química
8.
J Am Chem Soc ; 140(44): 14576-14580, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30339373

RESUMO

A pathological hallmark of Huntington's disease (HD) is the formation of neuronal protein deposits containing mutant huntingtin fragments with expanded polyglutamine (polyQ) domains. Prior studies have shown the strengths of solid-state NMR (ssNMR) to probe the atomic structure of such aggregates, but have required in vitro isotopic labeling. Herein, we present an approach for the structural fingerprinting of fibrils through ssNMR at natural isotopic abundance (NA). These methods will enable the spectroscopic fingerprinting of unlabeled (e.g., ex vivo) protein aggregates and the extraction of valuable new long-range 13C-13C distance constraints.


Assuntos
Proteína Huntingtina/química , Ressonância Magnética Nuclear Biomolecular , Isótopos de Carbono , Humanos , Isótopos de Nitrogênio , Tamanho da Partícula , Agregados Proteicos , Conformação Proteica
9.
J Am Chem Soc ; 137(43): 13796-9, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26485326

RESUMO

NMR crystallography of organic molecules at natural isotopic abundance (NA) strongly relies on the comparison of assigned experimental and computed NMR chemical shifts. However, a broad applicability of this approach is often hampered by the still limited (1)H resolution and/or difficulties in assigning (13)C and (15)N resonances without the use of structure-based chemical shift calculations. As shown here, such difficulties can be overcome by (13)C-(13)C and for the first time (15)N-(13)C correlation experiments, recorded with the help of dynamic nuclear polarization. We present the complete de novo (13)C and (15)N resonance assignment at NA of a self-assembled 2'-deoxyguanosine derivative presenting two different molecules in the asymmetric crystallographic unit cell. This de novo assignment method is exclusively based on aforementioned correlation spectra and is an important addition to the NMR crystallography approach, rendering firstly (1)H assignment straightforward, and being secondly a prerequisite for distance measurements with solid-state NMR.

10.
Chemistry ; 21(12): 4512-7, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25663569

RESUMO

Magic-angle spinning dynamic nuclear polarization (MAS-DNP) has been proven to be a powerful technique to enhance the sensitivity of solid-state NMR (SSNMR) in a wide range of systems. Here, we show that DNP can be used to polarize lipids using a lipid-anchored polarizing agent. More specifically, we introduce a C16-functionalized biradical, which allows localization of the polarizing agents in the lipid bilayer and DNP experiments to be performed in the absence of excess cryo-protectant molecules (glycerol, dimethyl sulfoxide, etc.). This constitutes another original example of the matrix-free DNP approach that we recently introduced.


Assuntos
Radicais Livres/química , Lipossomos/química , Óxidos N-Cíclicos/química , Bicamadas Lipídicas/química , Ressonância Magnética Nuclear Biomolecular , Propanóis/química
11.
Phys Chem Chem Phys ; 17(34): 21824-36, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26235749

RESUMO

Over the last two decades solid state Nuclear Magnetic Resonance has witnessed a breakthrough in increasing the nuclear polarization, and thus experimental sensitivity, with the advent of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP). To enhance the nuclear polarization of protons, exogenous nitroxide biradicals such as TOTAPOL or AMUPOL are routinely used. Their efficiency is usually assessed as the ratio between the NMR signal intensity in the presence and the absence of microwave irradiation εon/off. While TOTAPOL delivers an enhancement εon/off of about 60 on a model sample, the more recent AMUPOL is more efficient: >200 at 100 K. Such a comparison is valid as long as the signal measured in the absence of microwaves is merely the Boltzmann polarization and is not affected by the spinning of the sample. However, recent MAS-DNP studies at 25 K by Thurber and Tycko (2014) have demonstrated that the presence of nitroxide biradicals combined with sample spinning can lead to a depolarized nuclear state, below the Boltzmann polarization. In this work we demonstrate that TOTAPOL and AMUPOL both lead to observable depolarization at ≈110 K, and that the magnitude of this depolarization is radical dependent. Compared to the static sample, TOTAPOL and AMUPOL lead, respectively, to nuclear polarization losses of up to 20% and 60% at a 10 kHz MAS frequency, while Trityl OX63 does not depolarize at all. This experimental work is analyzed using a theoretical model that explains how the depolarization process works under MAS and gives new insights into the DNP mechanism and into the spin parameters, which are relevant for the efficiency of a biradical. In light of these results, the outstanding performance of AMUPOL must be revised and we propose a new method to assess the polarization gain for future radicals.

12.
Solid State Nucl Magn Reson ; 66-67: 6-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25779337

RESUMO

The recent trend of high-field (~5-20 T), low-temperature (~100 K) ssNMR combined with dynamic nuclear polarization (DNP) under magic angle spinning (MAS) conditions is analyzed. A brief overview of the current theory of hyperpolarization for so-called MAS-DNP experiments is given, along with various reasons why the DNP-enhancement, the ratio of the NMR signal intensities obtained in the presence and absence of microwave irradiation suitable for hyperpolarization, should not be used alone to gauge the value of performing MAS-DNP experiments relative to conventional ssNMR. This is demonstrated through a dissection of the current conditions required for MAS-DNP with particular attention to resulting absolute sensitivities and spectral resolution. Consequently, sample preparation methods specifically avoiding the surplus of glass-forming solvents so as to improve the absolute sensitivity and resolution are discussed, as are samples that are intrinsically pertinent for MAS-DNP studies (high surface area, amorphous, and porous). Owing to their pertinence, examples of recent applications on these types of samples where chemically-relevant information has been obtained that would have been impossible without the sensitivity increases bestowed by MAS-DNP are also detailed. Additionally, a promising further implementation for MAS-DNP is exampled, whereby the sensitivity improvements shown for (correlation) spectroscopy of nuclei at low natural isotopic abundance, facilitate internuclear distance measurements, especially for long distances (absence of dipolar truncation). Finally, we give some speculative perspectives for MAS-DNP.

13.
J Am Chem Soc ; 135(13): 5105-10, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23362837

RESUMO

Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.


Assuntos
Bactérias/química , Parede Celular/química , Espectroscopia de Ressonância Magnética , Parede Celular/metabolismo , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/metabolismo , Modelos Biológicos , Peptidoglicano/química , Propanóis/química , Propanóis/metabolismo
14.
Commun Chem ; 6(1): 58, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977767

RESUMO

Studying the surface chemistry of functionalized cellulose nanofibrils at atomic scale is an ongoing challenge, mainly because FT-IR, NMR, XPS and RAMAN spectroscopy are limited in sensitivity or resolution. Herein, we show that dynamic nuclear polarization (DNP) enhanced 13C and 15N solid-state NMR is a uniquely suited technique to optimize the drug loading on nanocellulose using aqueous heterogenous chemistry. We compare the efficiency of two conventional coupling agents (DMTMM vs EDC/NHS) to bind a complex prodrug of ciprofloxacin designed for controlled drug release. Besides quantifying the drug grafting, we also evidence the challenge to control the concurrent prodrug adsorption and to optimize washing procedures. We notably highlight the presence of an unexpected prodrug cleavage mechanism triggered by carboxylates at the surface of the cellulose nanofibrils.

15.
Chem Sci ; 14(14): 3852-3864, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37035686

RESUMO

Magic angle spinning (MAS) dynamic nuclear polarization (DNP) has significantly broadened the scope of solid-state NMR to study biomolecular systems and materials. In recent years, the advent of very high field DNP combined with fast MAS has brought new challenges in the design of polarizing agents (PA) used to enhance nuclear spin polarization. Here, we present a trityl-nitroxide PA family based on a piperazine linker, named PyrroTriPol, for both aqueous and organic solutions. These new radicals have similar properties to that of TEMTriPol-I and can be readily synthesized, and purified in large quantities thereby ensuring widespread application. The family relies on a rigid bridge connecting the trityl and the nitroxide offering a better control of the electron spin-spin interactions thus providing improved performance across a broad range of magnetic fields and MAS frequencies while requiring reduced microwave power compared to bis-nitroxides. We demonstrate the efficiency of the PyrroTriPol family under a magnetic field of 9.4, 14.1 and 18.8 T with respect to TEMTriPol-I. In particular, the superiority of PyrroTriPol was demonstrated on γ-Al2O3 nanoparticles which enabled the acquisition of a high signal-to-noise surface-selective 27Al multiple-quantum MAS experiment at 18.8 T and 40 kHz MAS frequency.

16.
J Magn Reson ; 356: 107561, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837749

RESUMO

We report here instrumental developments to achieve sustainable, cost-effective cryogenic Helium sample spinning in order to conduct dynamic nuclear polarisation (DNP) and solid-state NMR (ssNMR) at ultra-low temperatures (<30 K). More specifically, we describe an efficient closed-loop helium system composed of a powerful heat exchanger (95% efficient), a single cryocooler, and a single helium compressor to power the sample spinning and cooling. The system is integrated with a newly designed triple-channel NMR probe that minimizes thermal losses without compromising the radio frequency (RF) performance and spinning stability (±0.05%). The probe is equipped with an innovative cryogenic sample exchange system that allows swapping samples in minutes without introducing impurities in the closeloop system. We report that significant gain in sensitivity can be obtained at 30-40 K on large micro-crystalline molecules with unfavorable relaxation timescales, making them difficult or impossible to polarize at 100 K. We also report rotor-synchronized 2D experiments to demonstrate the stability of the system.

17.
Phys Chem Chem Phys ; 14(20): 7246-55, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22513727

RESUMO

We consider the effect of phase shifts in the context of second-order recoupling techniques in solid-state NMR. Notably we highlight conditions leading to significant improvements for the Third Spin Assisted Recoupling (TSAR) mechanism and demonstrate the benefits of resulting techniques for detecting long-distance transfer in biomolecular systems. The modified pulse sequences of PAR and PAIN-CP, Phase-Shifted Proton Assisted Recoupling (AH-PS-PAR) and Phase-Shifted Proton-Assisted Insensitive Nuclei Cross Polarization (ABH-PS-PAIN-CP), still rely on cross terms between heteronuclear dipolar couplings involving assisting protons that mediate zero-quantum polarization transfer between low-γ nuclei ((13)C-(13)C, (15)N-(15)N, (15)N-(13)C polarization transfer). Using Average Hamiltonian Theory we show that phase inversion compensates off-resonance contributions and yields improved polarization transfer as well as substantial broadening of the matching conditions. PS-TSAR greatly improves on the standard TSAR based methods because it alleviates their sensitivity to precise RF settings which significantly enhances robustness of the experiments. We demonstrate these new methods on a 19.6 kDa protein (U-[(15)N, (13)C]-YajG) at high magnetic fields (up to 900 MHz (1)H frequency) and fast sample spinning (up to 65 kHz MAS frequency).


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Alanina/química , Algoritmos , Isótopos de Carbono/química , Simulação por Computador , Modelos Químicos , Isótopos de Nitrogênio/química , Radioisótopos de Nitrogênio/química , Proteínas/química , Prótons
18.
Chem Sci ; 12(18): 6223-6237, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-34084422

RESUMO

High-field dynamic nuclear polarization is revolutionizing the scope of solid-state NMR with new applications in surface chemistry, materials science and structural biology. In this perspective article, we focus on a specific DNP approach, called targeted DNP, in which the paramagnets introduced to polarize are not uniformly distributed in the sample but site-specifically located on the biomolecular system. After reviewing the various targeting strategies reported to date, including a bio-orthogonal chemistry-based approach, we discuss the potential of targeted DNP to improve the overall NMR sensitivity while avoiding the use of glass-forming DNP matrix. This is especially relevant to the study of diluted biomolecular systems such as, for instance, membrane proteins within their lipidic environment. We also discuss routes towards extracting structural information from paramagnetic relaxation enhancement (PRE) induced by targeted DNP at cryogenic temperature, and the possibility to recover site-specific information in the vicinity of the paramagnetic moieties using high-resolution selective DNP spectra. Finally, we review the potential of targeted DNP for in-cell NMR studies and how it can be used to extract a given protein NMR signal from a complex cellular background.

19.
J Am Chem Soc ; 132(31): 10911-9, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20681725

RESUMO

The bacterial cell wall maintains a cell's integrity while allowing growth and division. It is made up of peptidoglycan (PG), a biopolymer forming a multigigadalton bag-like structure, and, additionally in gram-positive bacteria, of covalently linked anionic polymers collectively called teichoic acids. These anionic polymers are thought to play important roles in host-cell adhesion, inflammation, and immune activation. In this Article, we compare the flexibility and the organization of peptidoglycans from gram-negative bacteria (E. coli) with its counterpart from different gram-positive bacteria using solid-state nuclear magnetic resonance spectroscopy (NMR) under magic-angle sample spinning (MAS). The NMR fingerprints suggest an identical local conformation of the PG in all of these bacterial species. Dynamics in the peptidoglycan network decreases from E. coli to B. subtilis and from B. subtilis to S. aureus and correlates mainly with the degree of peptide cross-linkage. For intact bacterial cells and isolated cell walls, we show that (31)P solid-state NMR is particularly well adapted to characterize and differentiate wall teichoic acids of different species. We have further observed complexation with divalent ions, highlighting an important structural aspect of gram-positive cell wall architecture. We propose a new model for the interaction of divalent cations with both wall teichoic acids and carbonyl groups of peptidoglycan.


Assuntos
Bacillus subtilis/química , Parede Celular/química , Escherichia coli/química , Magnésio/química , Manganês/química , Staphylococcus aureus/química , Bacillus subtilis/citologia , Sítios de Ligação , Escherichia coli/citologia , Íons/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peptidoglicano/química , Staphylococcus aureus/citologia , Ácidos Teicoicos/química , Termodinâmica , Água/química
20.
Phys Chem Chem Phys ; 12(47): 15428-35, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20976319

RESUMO

The metal bonded ruthenium polymer [Ru(0)(bpy)(CO)(2)](n) (bpy = 2,2'-bipyridine) is known to be a very promising and efficient solid material for catalysis applications, such as carbon dioxide electroreduction in pure aqueous media and the water-gas shift reaction. It also exhibits potential application for molecular electronics as a conductive molecular wire. The insolubility and relative air-sensitivity of [Ru(0)(bpy)(CO)(2)](n) as well as the lack of monocrystals make its structural characterization very challenging. A first approach to determine the structure of this polymer has been obtained by ab initio X-ray powder diffraction, based on the known X-ray structure of [Ru(CO)(4)](n). In order to refine this structure, a non-conventional solid-state NMR study was performed. The results of this study are presented here. The comparison of high-resolution solid-state (13)C NMR spectra of the polymer with those of the corresponding monomeric [Ru(bpy)(CO)(2)Cl(2)] or dimeric [Ru(bpy)(CO)(2)Cl](2) precursor complexes has shown a clear shift and splitting of carbonyl ligand resonances, which turns out to be linearly correlated with the redox state of the Ru (ii, i or 0, respectively). Bipyridine resonances are also affected but in a non-trivial way. Finally, in the case of the dimer, it was found that the CO peak splitting (2.7 ppm) contains structural information, e.g. the ligand staggering angle. Based on DFT chemical shift calculations on corresponding model molecules (n = 1-2), all the described experimental observations could be reproduced. Moreover, upon extending these calculations to models of increasing length (n = 3-5), it turns out that information about the staggering angle between successive ligands is actually retained in the CO NMR computed peak splitting. Turning back to experiments, the CO broad signal measured for the wire could be decomposed into a major component (at 214.9 ppm) assigned to the internal CO ligands, and a minor doublet component (216.9 and 218.1 ppm) whose splitting (2.8 ppm) contains the staggering angle information. Finally, from the relative integrals of these three components, expected to be in the ratio 1 : 1 : n-2, it was possible to tentatively estimate the length n of the polymetallic wire (n = 7).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA