Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Health Qual Life Outcomes ; 22(1): 64, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148105

RESUMO

BACKGROUND: Health-related quality of life (HRQL) has become an important outcome parameter in cardiology. The MOS 36-ltem Short-Form Health Survey (SF-36) and the PROMIS-29 are two widely used generic measures providing composite HRQL scores. The domains of the SF-36, a well-established instrument utilized for several decades, can be aggregated to physical (PCS) and mental (MCS) component summary scores. Alternative scoring algorithms for correlated component scores (PCSc and MCSc) have also been suggested. The PROMIS-29 is a newer but increasingly used HRQL measure. Analogous to the SF-36, physical and mental health summary scores can be derived from PROMIS-29 domain scores, based on a correlated factor solution. So far, scores from the PROMIS-29 are not directly comparable to SF-36 results, complicating the aggregation of research findings. Thus, our aim was to provide algorithms to convert PROMIS-29 data to well-established SF-36 component summary scores. METHODS: Data from n = 662 participants of the Berlin Long-term Observation of Vascular Events (BeLOVE) study were used to estimate linear regression models with either PROMIS-29 domain scores or aggregated PROMIS-29 physical/mental health summary scores as predictors and SF-36 physical/mental component summary scores as outcomes. Data from a subsequent assessment point (n = 259) were used to evaluate the agreement between empirical and predicted SF-36 scores. RESULTS: PROMIS-29 domain scores as well as PROMIS-29 health summary scores showed high predictive value for PCS, PCSc, and MCSc (R2 ≥ 70%), and moderate predictive value for MCS (R2 = 57% and R2 = 40%, respectively). After applying the regression coefficients to new data, empirical and predicted SF-36 component summary scores were highly correlated (r > 0.8) for most models. Mean differences between empirical and predicted scores were negligible (|SMD|<0.1). CONCLUSIONS: This study provides easy-to-apply algorithms to convert PROMIS-29 data to well-established SF-36 physical and mental component summary scores in a cardiovascular population. Applied to new data, the agreement between empirical and predicted SF-36 scores was high. However, for SF-36 mental component summary scores, considerably better predictions were found under the correlated (MCSc) than under the original factor model (MCS). Additionally, as a pertinent byproduct, our study confirmed construct validity of the relatively new PROMIS-29 health summary scores in cardiology patients.


Assuntos
Doenças Cardiovasculares , Qualidade de Vida , Humanos , Masculino , Feminino , Doenças Cardiovasculares/psicologia , Pessoa de Meia-Idade , Idoso , Inquéritos e Questionários/normas , Algoritmos , Saúde Mental , Psicometria , Inquéritos Epidemiológicos
2.
Neuroimage ; 220: 117104, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32621973

RESUMO

Structural covariance analysis is a widely used structural MRI analysis method which characterises the co-relations of morphology between brain regions over a group of subjects. To our knowledge, little has been investigated in terms of the comparability of results between different data sets of healthy human subjects, as well as the reliability of results over the same subjects in different rescan sessions, image resolutions, or FreeSurfer versions. In terms of comparability, our results show substantial differences in the structural covariance matrix between data sets of age- and sex-matched healthy human adults. These differences persist after univariate site correction, they are exacerbated by low sample sizes, and they are most pronounced when using average cortical thickness as a morphological measure. Down-stream graph theoretic analyses further show statistically significant differences. In terms of reliability, substantial differences were also found when comparing repeated scan sessions of the same subjects, image resolutions, and even FreeSurfer versions of the same image. We could further estimate the relative measurement error and showed that it is largest when using cortical thickness as a morphological measure. Using simulated data, we argue that cortical thickness is least reliable because of larger relative measurement errors. Practically, we make the following recommendations (1) combining subjects across sites into one group should be avoided, particularly if sites differ in image resolutions, subject demographics, or preprocessing steps; (2) surface area and volume should be preferred as morphological measures over cortical thickness; (3) a large number of subjects (n≫30 for the Desikan-Killiany parcellation) should be used to estimate structural covariance; (4) measurement error should be assessed where repeated measurements are available; (5) if combining sites is critical, univariate (per ROI) site-correction is insufficient, but error covariance (between ROIs) should be explicitly measured and modelled.


Assuntos
Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
3.
Front Neurol ; 15: 1297997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469587

RESUMO

Background: Myasthenia gravis (MG) is a rare autoimmune disease characterized by fatigable weakness of the voluntary muscles and can exacerbate to life-threatening myasthenic crisis (MC), requiring intensive care treatment. Routine laboratory parameters are a cost-effective and widely available method for estimating the clinical outcomes of several diseases, but so far, such parameters have not been established to detect disease progression in MG. Methods: We conducted a retrospective analysis of selected laboratory parameters related to inflammation and hemogram for MG patients with MC compared to MG patients without MC. To identify potential risk factors for MC, we applied time-varying Cox regression for time to MC and, as a sensitivity analysis, generalized estimating equations logistic regression for the occurrence of MC at the next patient visit. Results: 15 of the 58 examined MG patients suffered at least one MC. There was no notable difference in the occurrence of MC by antibody status or sex. Both regression models showed that higher counts of basophils (per 0.01 unit increase: HR = 1.32, 95% CI = 1.02-1.70), neutrophils (per 1 unit increase: HR = 1.40, 95% CI = 1.14-1.72), potentially leukocytes (per 1 unit increase: HR = 1.15, 95% CI = 0.99-1.34), and platelets (per 100 units increase: HR = 1.54, 95% CI = 0.99-2.38) may indicate increased risk for a myasthenic crisis. Conclusion: This pilot study provides proof of the concept that increased counts of basophils, neutrophils, leukocytes, and platelets may be associated with a higher risk of developing MC in patients with MG.

4.
BMJ Open ; 13(10): e076415, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907297

RESUMO

INTRODUCTION: The Berlin Long-term Observation of Vascular Events is a prospective cohort study that aims to improve prediction and disease-overarching mechanistic understanding of cardiovascular (CV) disease progression by comprehensively investigating a high-risk patient population with different organ manifestations. METHODS AND ANALYSIS: A total of 8000 adult patients will be recruited who have either suffered an acute CV event (CVE) requiring hospitalisation or who have not experienced a recent acute CVE but are at high CV risk. An initial study examination is performed during the acute treatment phase of the index CVE or after inclusion into the chronic high risk arm. Deep phenotyping is then performed after ~90 days and includes assessments of the patient's medical history, health status and behaviour, cardiovascular, nutritional, metabolic, and anthropometric parameters, and patient-related outcome measures. Biospecimens are collected for analyses including 'OMICs' technologies (e.g., genomics, metabolomics, proteomics). Subcohorts undergo MRI of the brain, heart, lung and kidney, as well as more comprehensive metabolic, neurological and CV examinations. All participants are followed up for up to 10 years to assess clinical outcomes, primarily major adverse CVEs and patient-reported (value-based) outcomes. State-of-the-art clinical research methods, as well as emerging techniques from systems medicine and artificial intelligence, will be used to identify associations between patient characteristics, longitudinal changes and outcomes. ETHICS AND DISSEMINATION: The study was approved by the Charité-Universitätsmedizin Berlin ethics committee (EA1/066/17). The results of the study will be disseminated through international peer-reviewed publications and congress presentations. STUDY REGISTRATION: First study phase: Approved WHO primary register: German Clinical Trials Register: https://drks.de/search/de/trial/DRKS00016852; WHO International Clinical Registry Platform: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=DRKS00016852. Recruitment started on July 18, 2017.Second study phase: Approved WHO primary register: German Clinical Trials Register DRKS00023323, date of registration: November 4, 2020, URL: http://www.drks.de/ DRKS00023323. Recruitment started on January 1, 2021.


Assuntos
COVID-19 , Doenças Cardiovasculares , Adulto , Humanos , SARS-CoV-2 , Berlim , Estudos Prospectivos , Inteligência Artificial , Seguimentos , Pulmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA