RESUMO
Bud tip progenitors (BTPs) in the developing lung give rise to all epithelial cell types found in the airways and alveoli. This work aimed to develop an iPSC organoid model enriched with NKX2-1+ BTP-like cells. Building on previous studies, we optimized a directed differentiation paradigm to generate spheroids with more robust NKX2-1 expression. Spheroids were expanded into organoids that possessed NKX2-1+/CPM+ BTP-like cells, which increased in number over time. Single cell RNA-sequencing analysis revealed a high degree of transcriptional similarity between induced BTPs (iBTPs) and in vivo BTPs. Using FACS, iBTPs were purified and expanded as induced bud tip progenitor organoids (iBTOs), which maintained an enriched population of bud tip progenitors. When iBTOs were directed to differentiate into airway or alveolar cell types using well-established methods, they gave rise to organoids composed of organized airway or alveolar epithelium, respectively. Collectively, iBTOs are transcriptionally and functionally similar to in vivo BTPs, providing an important model for studying human lung development and differentiation.
Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Fator Nuclear 1 de Tireoide/metabolismo , Células Epiteliais Alveolares , Diferenciação Celular , Humanos , Pulmão , OrganoidesRESUMO
During development, the ectoderm is patterned by a combination of BMP and WNT signaling. Research in model organisms has provided substantial insight into this process; however, there are currently no systems in which to study ectodermal patterning in humans. Further, the complexity of neural plate border specification has made it difficult to transition from discovering the genes involved to deeper mechanistic understanding. Here, we develop an in vitro model of human ectodermal patterning, in which human embryonic stem cells self-organize to form robust and quantitatively reproducible patterns corresponding to the complete medial-lateral axis of the embryonic ectoderm. Using this platform, we show that the duration of endogenous WNT signaling is a crucial control parameter, and that cells sense relative levels of BMP and WNT signaling in making fate decisions. These insights allowed us to develop an improved protocol for placodal differentiation. Thus, our platform is a powerful tool for studying human ectoderm patterning and for improving directed differentiation protocols.This article has an associated 'The people behind the papers' interview.
Assuntos
Ectoderma/citologia , Células-Tronco Embrionárias/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Crista Neural/citologia , Proteínas Wnt/metabolismoRESUMO
Recently, it has become possible to recapitulate embryonic patterning in vitro using embryonic stem cells. The technical advantages and reduced complexity of these embryoids make them ideally suited to rigorously test long standing paradigms for pattern formation in the mammalian embryo. Here, we discuss insights into the underlying mechanisms that have been gained from stem cell models to date, focusing on models for gastrulation.
Assuntos
Padronização Corporal/fisiologia , Embrião de Mamíferos/embriologia , Células-Tronco Embrionárias/citologia , Gastrulação/fisiologia , Células-Tronco Pluripotentes/citologia , Animais , Humanos , Camundongos , Modelos Biológicos , Biologia de SistemasRESUMO
The way in which interactions between mechanics and biochemistry lead to the emergence of complex cell and tissue organization is an old question that has recently attracted renewed interest from biologists, physicists, mathematicians and computer scientists. Rapid advances in optical physics, microscopy and computational image analysis have greatly enhanced our ability to observe and quantify spatiotemporal patterns of signalling, force generation, deformation, and flow in living cells and tissues. Powerful new tools for genetic, biophysical and optogenetic manipulation are allowing us to perturb the underlying machinery that generates these patterns in increasingly sophisticated ways. Rapid advances in theory and computing have made it possible to construct predictive models that describe how cell and tissue organization and dynamics emerge from the local coupling of biochemistry and mechanics. Together, these advances have opened up a wealth of new opportunities to explore how mechanochemical patterning shapes organismal development. In this roadmap, we present a series of forward-looking case studies on mechanochemical patterning in development, written by scientists working at the interface between the physical and biological sciences, and covering a wide range of spatial and temporal scales, organisms, and modes of development. Together, these contributions highlight the many ways in which the dynamic coupling of mechanics and biochemistry shapes biological dynamics: from mechanoenzymes that sense force to tune their activity and motor output, to collectives of cells in tissues that flow and redistribute biochemical signals during development.
Assuntos
Fenômenos Biomecânicos , Morfogênese , Transdução de Sinais , Modelos BiológicosRESUMO
Paracrine signals maintain developmental states and create cell fate patterns in vivo and influence differentiation outcomes in human embryonic stem cells (hESCs) in vitro Systematic investigation of morphogen signaling is hampered by the difficulty of disentangling endogenous signaling from experimentally applied ligands. Here, we grow hESCs in micropatterned colonies of 1-8 cells ('µColonies') to quantitatively investigate paracrine signaling and the response to external stimuli. We examine BMP4-mediated differentiation in µColonies and standard culture conditions and find that in µColonies, above a threshold concentration, BMP4 gives rise to only a single cell fate, contrary to its role as a morphogen in other developmental systems. Under standard culture conditions BMP4 acts as a morphogen but this requires secondary signals and particular cell densities. We find that a 'community effect' enforces a common fate within µColonies, both in the state of pluripotency and when cells are differentiated, and that this effect allows a more precise response to external signals. Using live cell imaging to correlate signaling histories with cell fates, we demonstrate that interactions between neighbors result in sustained, homogenous signaling necessary for differentiation.
Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Clonais , Ensaio de Unidades Formadoras de Colônias , Ectoderma/citologia , Ectoderma/efeitos dos fármacos , Ectoderma/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , Modelos Biológicos , Proteína Nodal/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacosRESUMO
Mechanical stress can influence cell proliferation in vitro, but whether it makes a significant contribution to growth control in vivo, and how it is modulated and experienced by cells within developing tissues, has remained unclear. Here we report that differential growth reduces cytoskeletal tension along cell junctions within faster-growing cells. We propose a theoretical model to explain the observed reduction of tension within faster-growing clones, supporting it by computer simulations based on a generalized vertex model. This reduced tension modulates a biomechanical Hippo pathway, decreasing recruitment of Ajuba LIM protein and the Hippo pathway kinase Warts, and decreasing the activity of the growth-promoting transcription factor Yorkie. These observations provide a specific mechanism for a mechanical feedback that contributes to evenly distributed growth, and we show that genetically suppressing mechanical feedback alters patterns of cell proliferation in the developing Drosophila wing. By providing experimental support for the induction of mechanical stress by differential growth, and a molecular mechanism linking this stress to the regulation of growth in developing organs, our results confirm and extend the mechanical feedback hypothesis.
RESUMO
The high volumes of data produced by state-of-the-art optical microscopes encumber research. We developed a method that reduces data size and processing time by orders of magnitude while disentangling signal by taking advantage of the laminar structure of many biological specimens. Our Image Surface Analysis Environment automatically constructs an atlas of 2D images for arbitrarily shaped, dynamic and possibly multilayered surfaces of interest. Built-in correction for cartographic distortion ensures that no information on the surface is lost, making the method suitable for quantitative analysis. We applied our approach to 4D imaging of a range of samples, including a Drosophila melanogaster embryo and a Danio rerio beating heart.
Assuntos
Embrião não Mamífero/anatomia & histologia , Coração/anatomia & histologia , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Modelos Biológicos , Animais , Drosophila melanogaster , Asas de Animais/anatomia & histologia , Asas de Animais/embriologia , Peixe-ZebraRESUMO
In the course of morphogenesis, tissues change shape and grow. How this is orchestrated is largely unknown, partly owing to the lack of experimental methods to visualize and quantify growth. Here, we describe a novel experimental approach to investigate the growth of tissues in vivo on a time-scale of days, as employed to study the Drosophila larval imaginal wing disc, the precursor of the adult wing. We developed a protocol to image wing discs at regular intervals in living anesthetized larvae so as to follow the growth of the tissue over extended periods of time. This approach can be used to image cells at high resolution in vivo. At intermediate scale, we tracked the increase in cell number within clones as well as the changes in clone area and shape. At scales extending to the tissue level, clones can be used as landmarks for measuring strain, as a proxy for growth. We developed general computational tools to extract strain maps from clonal shapes and landmark displacements in individual tissues, and to combine multiple datasets into a mean strain. In the disc, we use these to compare properties of growth at the scale of clones (a few cells) and at larger regional scales.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Discos Imaginais/embriologia , Microscopia de Fluorescência/métodos , Asas de Animais/embriologia , Animais , Caspases/metabolismo , Biologia Computacional , Drosophila , Proteínas de Fluorescência Verde/metabolismo , Discos Imaginais/crescimento & desenvolvimento , Modelos Teóricos , Estresse Mecânico , Asas de Animais/crescimento & desenvolvimentoRESUMO
In vivo studies have identified the signaling pathways and transcription factors involved in patterning the vertebrate embryo, but much remains unknown about how these are organized in space and time to orchestrate embryogenesis. Recently, embryonic stem cells have been established as a platform for studying spatial pattern formation and differentiation dynamics in the early mammalian embryo. The ease of observing and manipulating stem cell systems promises to fill gaps in our understanding of developmental dynamics and identify aspects that are uniquely human. Developmental Dynamics 245:976-990, 2016. © 2016 Wiley Periodicals, Inc.
Assuntos
Padronização Corporal/fisiologia , Células-Tronco Pluripotentes/citologia , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Micropatterned human pluripotent stem cells (hPSCs) treated with BMP4 (2D gastruloids) are among the most widely used stem cell models for human gastrulation. Due to its simplicity and reproducibility, this system is ideal for high throughput quantitative studies of tissue patterning and has led to many insights into the mechanisms of mammalian gastrulation. However, 2D gastruloids have only been studied up to 48h. Here we extended this system to 96h. We discovered a phase of highly reproducible morphogenesis during which directed migration from the primitive streak-like region gives rise to a mesodermal layer beneath an epiblast-like layer. Multiple types of mesoderm arise with striking spatial organization including lateral mesoderm-like cells on the colony border and paraxial mesoderm-like further inside the colony. Single cell transcriptomics showed strong similarity of these cells to mesoderm in human and non-human primate embryos. However, our data suggest that the annotation of the reference human embryo may need to be revised. This illustrates that extended culture of 2D gastruloids provides a powerful model for human mesoderm differentiation and morphogenesis.
RESUMO
The role of FGF is the least understood of the morphogens driving mammalian gastrulation. Here we investigated the function of FGF in a stem cell model for human gastrulation known as a 2D gastruloid. We found a ring of FGF-dependent ERK activity that closely follows the emergence of primitive streak (PS)-like cells but expands further inward. We showed that this ERK activity pattern is required for PS-like differentiation and that loss of PS-like cells upon FGF receptor inhibition can be rescued by directly activating ERK. We further demonstrated that the ERK-ring depends on localized activation of basally localized FGF receptors (FGFR) by endogenous FGF gradients. We confirm and extend previous studies in analyzing expression of FGF pathway components, showing the main receptor to be FGFR1 and the key ligands FGF2/4/17, similar to the human and monkey embryo but different from the mouse. In situ hybridization and scRNA-seq revealed that FGF4 and FGF17 expression colocalize with the PS marker TBXT but only FGF17 is maintained in nascent mesoderm and endoderm. FGF4 and FGF17 reduction both reduced ERK activity and differentiation to PS-like cells and their derivatives, indicating overlapping function. Thus, we have identified a previously unknown role for FGF-dependent ERK signaling in 2D gastruloids and possibly the human embryo, driven by a mechanism where FGF4 and FGF17 signal through basally localized FGFR1 to induce PS-like cells.
RESUMO
How paracrine signals are interpreted to yield multiple cell fate decisions in a dynamic context during human development in vivo and in vitro remains poorly understood. Here we report an automated tracking method to follow signaling histories linked to cell fate in large numbers of human pluripotent stem cells (hPSCs). Using an unbiased statistical approach, we discover that measured BMP signaling history correlates strongly with fate in individual cells. We find that BMP response in hPSCs varies more strongly in the duration of signaling than the level. However, both the level and duration of signaling activity control cell fate choices only by changing the time integral. Therefore, signaling duration and level are interchangeable in this context. In a stem cell model for patterning of the human embryo, we show that signaling histories predict the fate pattern and that the integral model correctly predicts changes in cell fate domains when signaling is perturbed. Our data suggest that mechanistically, BMP signaling is integrated by SOX2.
Assuntos
Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Transdução de SinaisRESUMO
Primordial germ cell (PGC) specification is the first step in the development of the germline. Recent work has elucidated human-mouse differences in PGC differentiation and identified cell states with enhanced competency for PGC-like cell (PGCLC) differentiation in vitro in both species. However, it remains a subject of debate how different PGC competent states in vitro relate to each other, to embryonic development, and to the origin of PGCs in vivo. Here we review recent literature on human PGCLC differentiation in the context of mouse and non-human primate models. In contrast to what was previously thought, recent work suggests human pluripotent stem cells (hPSCs) are highly germline competent. We argue that paradoxical observations regarding the origin and signaling requirements of hPGCLCs may be due to local cell interactions. These confound assays of competence by generating endogenous signaling gradients and spatially modulating the ability to receive exogenous inductive signals. Furthermore, combinatorial signaling suggests that there is no unique germline competent state: rather than a one-dimensional spectrum of developmental progression, competence should be considered in a higher dimensional landscape of cell states.
Assuntos
Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Células Germinativas , Transdução de SinaisRESUMO
During development, cell signaling instructs tissue patterning, the process by which initially identical cells give rise to spatially organized structures consisting of different cell types. How multiple signals combinatorially instruct fate in space and time remains poorly understood. Simultaneous measurement of signaling activity through multiple signaling pathways and of the cell fates they control is critical to addressing this problem. Here we describe an iterative immunofluorescence protocol and computational pipeline to interrogate pattern formation in a 2D model of human gastrulation with far greater multiplexing than is possible with standard immunofluorescence techniques. This protocol and computational pipeline together enable imaging followed by spatial and co-localization analysis of over 27 proteins in the same gastruloids. We demonstrate this by clustering single cell protein expression, using techniques familiar from scRNA-seq, and linking this to spatial position to calculate spatial distributions and cell signaling activity of different cell types. These methods are not limited to patterning in 2D gastruloids and can be easily extended to other contexts. In addition to the iterative immunofluorescence protocol and analysis pipeline, Support Protocols for 2D gastruloid differentiation and producing micropatterned multi-well slides are included. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Iterative immunofluorescence Basic Protocol 2: Computational analysis pipeline Support Protocol 1: Generating micropatterned multi-well slides Support Protocol 2: Differentiation of 2D gastruloids.
Assuntos
Gastrulação , Análise de Célula Única , Humanos , Imunofluorescência , Diferenciação Celular , Análise por ConglomeradosRESUMO
How paracrine signals are interpreted to yield multiple cell fate decisions in a dynamic context during human development in vivo and in vitro remains poorly understood. Here we report an automated tracking method to follow signaling histories linked to cell fate in large numbers of human pluripotent stem cells (hPSCs). Using an unbiased statistical approach, we discovered that measured BMP signaling history correlates strongly with fate in individual cells. We found that BMP response in hPSCs varies more strongly in the duration of signaling than the level. However, we discovered that both the level and duration of signaling activity control cell fate choices only by changing the time integral of signaling and that duration and level are therefore interchangeable in this context. In a stem cell model for patterning of the human embryo, we showed that signaling histories predict the fate pattern and that the integral model correctly predicts changes in cell fate domains when signaling is perturbed. Using an RNA-seq screen we then found that mechanistically, BMP signaling is integrated by SOX2.
RESUMO
Morphogens are signaling molecules that convey positional information and dictate cell fates during development. Although ectopic expression in model organisms suggests that morphogen gradients form through diffusion, little is known about how morphogen gradients are created and interpreted during mammalian embryogenesis due to the combined difficulties of measuring endogenous morphogen levels and observing development in utero. Here we take advantage of a human gastruloid model to visualize endogenous Nodal protein in living cells, during specification of germ layers. We show that Nodal is extremely short range so that Nodal protein is limited to the immediate neighborhood of source cells. Nodal activity spreads through a relay mechanism in which Nodal production induces neighboring cells to transcribe Nodal. We further show that the Nodal inhibitor Lefty, while biochemically capable of long-range diffusion, also acts locally to control the timing of Nodal spread and therefore of mesoderm differentiation during patterning. Our study establishes a paradigm for tissue patterning by an activator-inhibitor pair.
Assuntos
Blastocisto/metabolismo , Gástrula/metabolismo , Gastrulação/genética , Células-Tronco Embrionárias Humanas/metabolismo , Proteína Nodal/genética , Blastocisto/citologia , Linhagem Celular , Difusão , Imunofluorescência/métodos , Gástrula/citologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Células-Tronco Embrionárias Humanas/citologia , Humanos , Hibridização in Situ Fluorescente/métodos , Fatores de Determinação Direita-Esquerda/genética , Fatores de Determinação Direita-Esquerda/metabolismo , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Proteína Nodal/metabolismoRESUMO
Human primordial germ cells (hPGCs) form around the time of implantation and are the precursors of eggs and sperm. Many aspects of hPGC specification remain poorly understood because of the inaccessibility of the early postimplantation human embryo for study. Here, we show that micropatterned human pluripotent stem cells (hPSCs) treated with BMP4 give rise to hPGC-like cells (hPGCLC) and use these as a quantitatively reproducible and simple in vitro model to interrogate this important developmental event. We characterize micropatterned hPSCs up to 96 hr and show that hPGCLC populations are stable and continue to mature. By perturbing signaling during hPGCLC differentiation, we identify a previously unappreciated role for Nodal signaling and find that the relative timing and duration of BMP and Nodal signaling are critical parameters controlling the number of hPGCLCs. We formulate a mathematical model for a network of cross-repressive fates driven by Nodal and BMP signaling, which predicts the measured fate patterns after signaling perturbations. Finally, we show that hPSC colony size dictates the efficiency of hPGCLC specification, which led us to dramatically improve the efficiency of hPGCLC differentiation.
In humans and other animals, eggs and sperm are unique cells that pass on genetic material to the next generation. They originate from a small group of cells called primordial germ cells that form early in life in the developing embryo. Several different signal molecules including ones known as BMP4, Wnt, and Nodal, instruct certain cells in the embryo to become primordial germ cells. The process by which primordial germ cells are made in humans is very different to how primordial germ cells are made in mice and other so-called model animals that are commonly used in research. This has made it more challenging to uncover the details of the process in humans. Fortunately, new methods have recently been created that mimic aspects of how human embryos develop using human stem cells in a laboratory dish, providing an opportunity to gain a deeper understanding of how human germ cells form. Jo et al. used a technique called micropatterning to control the shape and size of groups of human stem cells growing in a laboratory dish. Treating these cells with a signal known as BMP4 gave rise to cells that resembled primordial germ cells. The team then used this system as a model to study how primordial germ cells form in humans. The experiments found that reducing Wnt signals in stem cells stopped primordial germ cells from forming in response to BMP4, confirming that Wnt signals made by the cells in response to BMP4 are essential. However, this block was overcome by providing the stem cells with another signal called Nodal. This suggests that the role of Wnt signaling in primordial germ cell formation is in part indirect by switching on Nodal in stem cells. Defects in eggs and sperm may lead to infertility, therefore, the findings of Jo et al. have the potential to help researchers develop new fertility treatments that use eggs or sperm grown in a laboratory from the patients' own stem cells. Such research would benefit from first developing a better understanding of how to make primordial germ cells.
Assuntos
Células Germinativas , Células-Tronco Pluripotentes , Diferenciação Celular , Desenvolvimento Embrionário , Humanos , Transdução de SinaisRESUMO
Proper development of the human embryo following its implantation into the uterine wall is critical for the successful continuation of pregnancy. However, the complex cellular and molecular changes that occur during this post-implantation period of human development are not amenable to study in vivo. Recently, several new embryo-like human pluripotent stem cell (hPSC)-based platforms have emerged, which are beginning to illuminate the current black box state of early human post-implantation biology. In this review, we will discuss how these experimental models are carving a way for understanding novel molecular and cellular mechanisms during early human development.
Assuntos
Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Modelos Biológicos , Células-Tronco Pluripotentes/metabolismo , Animais , Embrião de Mamíferos/citologia , Humanos , Células-Tronco Pluripotentes/citologiaRESUMO
During embryonic development, diffusible signaling molecules called morphogens are thought to determine cell fates in a concentration-dependent way. Yet, in mammalian embryos, concentrations change rapidly compared to the time for making cell fate decisions. Here, we use human embryonic stem cells (hESCs) to address how changing morphogen levels influence differentiation, focusing on how BMP4 and Nodal signaling govern the cell-fate decisions associated with gastrulation. We show that BMP4 response is concentration dependent, but that expression of many Nodal targets depends on rate of concentration change. Moreover, in a self-organized stem cell model for human gastrulation, expression of these genes follows rapid changes in endogenous Nodal signaling. Our study shows a striking contrast between the specific ways ligand dynamics are interpreted by two closely related signaling pathways, highlighting both the subtlety and importance of morphogen dynamics for understanding mammalian embryogenesis and designing optimized protocols for directed stem cell differentiation. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).