Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
EMBO Rep ; 24(12): e57224, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37818801

RESUMO

The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigate the potential viral proteins involved in abrogating tetherin function and find that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles where Coronaviruses bud, and increases tetherin localisation to late endocytic organelles via reduced retrograde recycling. We also find that expression of Spike protein causes a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Liberação de Vírus , Humanos , Antígeno 2 do Estroma da Médula Óssea/antagonistas & inibidores , Antígeno 2 do Estroma da Médula Óssea/metabolismo , COVID-19/virologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética
2.
J Infect Dis ; 229(3): 680-690, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37878754

RESUMO

Most patients with COVID-19 in the intensive care unit develop an acute respiratory distress syndrome characterized by severe hypoxemia, decreased lung compliance, and high vascular permeability. Activation of the complement system is a hallmark of moderate and severe COVID-19, with abundant deposition of complement proteins in inflamed tissue and on the endothelium during COVID-19. Using a transgenic mouse model of SARS-CoV-2 infection, we assessed the therapeutic utility of an inhibitory antibody (HG4) targeting MASP-2, a key enzyme in the lectin pathway. Treatment of infected mice with HG4 reduced the disease severity score and improved survival vs mice that received an isotype control antibody. Administration of HG4 significantly reduced the lung injury score, including alveolar inflammatory cell infiltration, alveolar edema, and alveolar hemorrhage. The ameliorating effect of MASP-2 inhibition on the severity of COVID-19 pathology is reflected by a significant reduction in the proinflammatory activation of brain microglia in HG4-treated mice.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Animais , Camundongos , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , SARS-CoV-2/metabolismo , Ativação do Complemento , Modelos Animais de Doenças , Proteínas do Sistema Complemento
3.
J Virol ; 95(23): e0135821, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549986

RESUMO

Gene editing may be used to excise the human immunodeficiency virus type 1 (HIV-1) provirus from the host cell genome, possibly eradicating the infection. Here, using cells acutely or latently infected by HIV-1 and treated with long terminal repeat (LTR)-targeting CRISPR/Cas9, we show that the excised HIV-1 provirus persists for a few weeks and may rearrange in circular molecules. Although circular proviral DNA is naturally formed during HIV-1 replication, we observed that gene editing might increase proviral DNA circles with restored LTRs. These extrachromosomal elements were recovered and probed for residual activity through their transfection in uninfected cells. We discovered that they can be transcriptionally active in the presence of Tat and Rev. Although confirming that gene editing is a powerful tool to eradicate HIV-1 infection, this work highlights that, to achieve this goal, the LTRs must be cleaved in several pieces to avoid residual activity and minimize the risk of reintegration in the context of genomic instability, possibly caused by the off-target activity of Cas9. IMPORTANCE The excision of HIV-1 provirus from the host cell genome has proven feasible in vitro and, to some extent, in vivo. Among the different approaches, CRISPR/Cas9 is the most promising tool for gene editing. The present study underlines the remarkable effectiveness of CRISPR/Cas9 in removing the HIV-1 provirus from infected cells and investigates the fate of the excised HIV-1 genome. This study demonstrates that the free provirus may persist in the cell after editing and in appropriate circumstances may reactivate. As an episome, it might be transcriptionally active, especially in the presence of Tat and Rev. The persistence of the HIV-1 episome was strongly decreased by gene editing with multiple targets. Although gene editing has the potential to eradicate HIV-1 infection, this work highlights a potential issue that warrants further investigation.


Assuntos
Sistemas CRISPR-Cas , DNA Circular , HIV-1/genética , Provírus/genética , Sequências Repetidas Terminais , Proteína 9 Associada à CRISPR , Edição de Genes , Regulação Viral da Expressão Gênica , Terapia Genética , Células HEK293 , Infecções por HIV/virologia , Humanos , RNA Guia de Cinetoplastídeos/genética
4.
J Virol ; 95(15): e0020321, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33963055

RESUMO

The majority of SARS-CoV-2 vaccines in use or advanced development are based on the viral spike protein (S) as their immunogen. S is present on virions as prefusion trimers in which the receptor binding domain (RBD) is stochastically open or closed. Neutralizing antibodies have been described against both open and closed conformations. The long-term success of vaccination strategies depends upon inducing antibodies that provide long-lasting broad immunity against evolving SARS-CoV-2 strains. Here, we have assessed the results of immunization in a mouse model using an S protein trimer stabilized in the closed state to prevent full exposure of the receptor binding site and therefore interaction with the receptor. We compared this with other modified S protein constructs, including representatives used in current vaccines. We found that all trimeric S proteins induced a T cell response and long-lived, strongly neutralizing antibody responses against 2019 SARS-CoV-2 and variants of concern P.1 and B.1.351. Notably, the protein binding properties of sera induced by the closed spike differed from those induced by standard S protein constructs. Closed S proteins induced more potent neutralizing responses than expected based on the degree to which they inhibit interactions between the RBD and ACE2. These observations suggest that closed spikes recruit different, but equally potent, immune responses than open spikes and that this is likely to include neutralizing antibodies against conformational epitopes present in the closed conformation. We suggest that closed spikes, together with their improved stability and storage properties, may be a valuable component of refined, next-generation vaccines. IMPORTANCE Vaccines in use against SARS-CoV-2 induce immune responses against the spike protein. There is intense interest in whether the antibody response induced by vaccines will be robust against new variants, as well as in next-generation vaccines for use in previously infected or immunized individuals. We assessed the use as an immunogen of a spike protein engineered to be conformationally stabilized in the closed state where the receptor binding site is occluded. Despite occlusion of the receptor binding site, the spike induces potently neutralizing sera against multiple SARS-CoV-2 variants. Antibodies are raised against a different pattern of epitopes to those induced by other spike constructs, preferring conformational epitopes present in the closed conformation. Closed spikes, or mRNA vaccines based on their sequence, can be a valuable component of next-generation vaccines.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Epitopos/química , Epitopos/imunologia , Células HEK293 , Humanos , Camundongos , Estabilidade Proteica , SARS-CoV-2/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
5.
J Med Virol ; 94(10): 4820-4829, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35705514

RESUMO

The virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease-2019 (COVID-19) pandemic, spread rapidly around the world causing high morbidity and mortality. However, there are four known, endemic seasonal coronaviruses in humans (HCoVs), and whether antibodies for these HCoVs play a role in severity of COVID-19 disease has generated a lot of interest. Of these seasonal viruses NL63 is of particular interest as it uses the same cell entry receptor as SARS-CoV-2. We use functional, neutralizing assays to investigate cross-reactive antibodies and their relationship with COVID-19 severity. We analyzed the neutralization of SARS-CoV-2, NL63, HKU1, and 229E in 38 COVID-19 patients and 62 healthcare workers, and a further 182 samples to specifically study the relationship between SARS-CoV-2 and NL63. We found that although HCoV neutralization was very common there was little evidence that these antibodies neutralized SARS-CoV-2. Despite no evidence in cross-neutralization, levels of NL63 neutralizing antibodies become elevated after exposure to SARS-CoV-2 through infection or following vaccination.


Assuntos
COVID-19 , Coronavirus Humano NL63 , Anticorpos Antivirais , Reações Cruzadas , Humanos , Pandemias , SARS-CoV-2 , Estações do Ano , Glicoproteína da Espícula de Coronavírus
6.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429340

RESUMO

As part of the continuing effort to develop an effective HIV vaccine, we generated a poxviral vaccine vector (previously described) designed to improve on the results of the RV144 phase III clinical trial. The construct, NYVAC-KC, is a replication-competent, attenuated recombinant of the vaccinia virus strain NYVAC. NYVAC is a vector that has been used in many previous clinical studies but is replication deficient. Here, we report a side-by-side comparison of replication-restricted NYVAC and replication-competent NYVAC-KC in a nonhuman primate study, which utilized a prime-boost regimen similar to that of RV144. NYVAC-C and NYVAC-C-KC express the HIV-1 antigens gp140, and Gag/Gag-Pol-Nef-derived virus-like particles (VLPs) from clade C and were used as the prime, with recombinant virus plus envelope protein used as the boost. In nearly every T and B cell immune assay against HIV-1, including neutralization and antibody binding, NYVAC-C-KC induced a greater immune response than NYVAC-C, indicating that replication competence in a poxvirus may improve upon the modestly successful regimen used in the RV144 clinical trial.IMPORTANCE Though the RV144 phase III clinical trial showed promise that an effective vaccine against HIV-1 is possible, a successful vaccine will require improvement over the vaccine candidate (ALVAC) used in the RV144 study. With that goal in mind, we have tested in nonhuman primates an attenuated but replication-competent vector, NYVAC-KC, in direct comparison to its parental vector, NYVAC, which is replication restricted in human cells, similar to the ALVAC vector used in RV144. We have utilized a prime-boost regimen for administration of the vaccine candidate that is similar to the one used in the RV144 study. The results of this study indicate that a replication-competent poxvirus vector may improve upon the effectiveness of the RV144 clinical trial vaccine candidate.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Vacinas Virais/administração & dosagem , Replicação Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Anti-HIV/sangue , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Macaca mulatta , Masculino , Vacinação , Vaccinia virus/imunologia , Vacinas Virais/imunologia
7.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429343

RESUMO

The use of heterologous immunization regimens and improved vector systems has led to increases in immunogenicity of HIV-1 vaccine candidates in nonhuman primates. In order to resolve interrelations between different delivery modalities, three different poxvirus boost regimens were compared. Three groups of rhesus macaques were each primed with the same DNA vaccine encoding Gag, Pol, Nef, and gp140. The groups were then boosted with either the vaccinia virus strain NYVAC or a variant with improved replication competence in human cells, termed NYVAC-KC. The latter was administered either by scarification or intramuscularly. Finally, macaques were boosted with adjuvanted gp120 protein to enhance humoral responses. The regimen elicited very potent CD4+ and CD8+ T cell responses in a well-balanced manner, peaking 2 weeks after the boost. T cells were broadly reactive and polyfunctional. All animals exhibited antigen-specific humoral responses already after the poxvirus boost, which further increased following protein administration. Polyclonal reactivity of IgG antibodies was highest against HIV-1 clade C Env proteins, with considerable cross-reactivity to other clades. Substantial effector functional activities (antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated virus inhibition) were observed in serum obtained after the last protein boost. Notably, major differences between the groups were absent, indicating that the potent priming induced by the DNA vaccine initially framed the immune responses in such a way that the subsequent boosts with NYVAC and protein led only to an increase in the response magnitudes without skewing the quality. This study highlights the importance of selecting the best combination of vector systems in heterologous prime-boost vaccination regimens.IMPORTANCE The evaluation of HIV vaccine efficacy trials indicates that protection would most likely correlate with a polyfunctional immune response involving several effector functions from all arms of the immune system. Heterologous prime-boost regimens have been shown to elicit vigorous T cell and antibody responses in nonhuman primates that, however, qualitatively and quantitatively differ depending on the respective vector systems used. The present study evaluated a DNA prime and poxvirus and protein boost regimen and compared how two poxvirus vectors with various degrees of replication capacity and two different delivery modalities-conventional intramuscular delivery and percutaneous delivery by scarification-impact several immune effectors. It was found that despite the different poxvirus boosts, the overall immune responses in the three groups were similar, suggesting the potent DNA priming as the major determining factor of immune responses. These findings emphasize the importance of selecting optimal priming agents in heterologous prime-boost vaccination settings.


Assuntos
Antígenos HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Linfócitos T/imunologia , Vacinas de DNA/administração & dosagem , Vacinas Virais/imunologia , Replicação Viral , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Anti-HIV/sangue , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Macaca mulatta , Masculino , Poxviridae , Vacinação , Vacinas de DNA/imunologia , Vaccinia virus/imunologia
9.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077632

RESUMO

Human immunodeficiency virus type 1 (HIV-1) is the result of cross-species transmission of simian immunodeficiency virus from chimpanzees (SIVcpz). SIVcpz is a chimeric virus which shares common ancestors with viruses infecting red-capped mangabeys and a subset of guenon species. The epidemiology of SIV infection in hominoids is characterized by low prevalences and an uneven geographic distribution. Surveys in Cameroon indicated that two closely related members of the guenon species subset, mustached guenons and greater spot-nosed guenons, infected with SIVmus and SIVgsn, respectively, also have low rates of SIV infections in their populations. Compared to that for other monkeys, including red-capped mangabeys and closely related guenon species, such an epidemiology is unusual. By intensifying sampling of geographically distinct populations of mustached and greater spot-nosed guenons in Gabon and including large sample sets of mona guenons from Cameroon, we add strong support to the hypothesis that the paucity of SIV infections in wild populations is a general feature of this monophyletic group of viruses. Furthermore, comparative phylogenetic analysis reveals that this phenotype is a feature of this group of viruses infecting phylogenetically disparate hosts, suggesting that this epidemiological phenotype results from infection with these HIV-1-related viruses rather than from a common host factor. Thus, these HIV-1-related viruses, i.e., SIVcpz and the guenon viruses which share an ancestor with part of the SIVcpz genome, have an epidemiology distinct from that found for SIVs in other African primate species.IMPORTANCE Stable virus-host relationships are established over multiple generations. The prevalence of viral infections in any given host is determined by various factors. Stable virus-host relationships of viruses that are able to cause persistent infections and exist with high incidences of infection are generally characterized by a lack of morbidity prior to host reproduction. Such is the case for cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections of humans. SIV infections of most African primate species also satisfy these criteria, with these infections found at a high prevalence and with rare cases of clinical disease. In contrast, SIVcpz, the ancestor of HIV-1, has a different epidemiology, and it has been reported that infected animals suffer from an AIDS-like disease in the wild. Here we conclusively demonstrate that viruses which are closely related to SIVcpz and infect a subset of guenon monkeys show an epidemiology resembling that of SIVcpz.


Assuntos
Variação Genética , Filogeografia , Síndrome de Imunodeficiência Adquirida dos Símios/epidemiologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/genética , Topografia Médica , Animais , Camarões , Gabão , Haplorrinos , Prevalência , Vírus da Imunodeficiência Símia/isolamento & purificação
10.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701402

RESUMO

Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4+ T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell (P < 0.001) response kinetics and superior ADCC (P < 0.014) in a group receiving the CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked immunosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier (P = 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen induced superior B-cell and ADCC responses, and the elevated B-cell responses proved to be remarkably durable, lasting more than 60 weeks postimmunization.IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Antígenos CD4/imunologia , Anticorpos Anti-HIV/imunologia , Macaca mulatta/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Sítios de Ligação de Anticorpos/imunologia , HIV-1/imunologia , Macaca mulatta/virologia , Vacinação
11.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179536

RESUMO

The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions.IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Vacinas contra a AIDS/genética , Animais , Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , Infecções por HIV/prevenção & controle , Interferon Tipo I/genética , Macaca mulatta , Masculino , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Vacinação , Vaccinia virus/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
12.
J Virol ; 90(8): 4133-4149, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865719

RESUMO

UNLABELLED: In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8(+)and CD4(+)T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE: Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols.


Assuntos
Vacinas contra a AIDS/imunologia , Primers do DNA , HIV-1/imunologia , Vacinas de DNA/imunologia , Vacinas contra a AIDS/genética , Animais , Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , Interferon gama/biossíntese , Masculino , Linfócitos T/imunologia , Vacinação/métodos , Vacinas de DNA/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
13.
PLoS Pathog ; 11(9): e1005146, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26360709

RESUMO

The virus-host relationship in simian immunodeficiency virus (SIV) infected chimpanzees is thought to be different from that found in other SIV infected African primates. However, studies of captive SIVcpz infected chimpanzees are limited. Previously, the natural SIVcpz infection of one chimpanzee, and the experimental infection of six chimpanzees was reported, with limited follow-up. Here, we present a long-term study of these seven animals, with a retrospective re-examination of the early stages of infection. The only clinical signs consistent with AIDS or AIDS associated disease was thrombocytopenia in two cases, associated with the development of anti-platelet antibodies. However, compared to uninfected and HIV-1 infected animals, SIVcpz infected animals had significantly lower levels of peripheral blood CD4+ T-cells. Despite this, levels of T-cell activation in chronic infection were not significantly elevated. In addition, while plasma levels of ß2 microglobulin, neopterin and soluble TNF-related apoptosis inducing ligand (sTRAIL) were elevated in acute infection, these markers returned to near-normal levels in chronic infection, reminiscent of immune activation patterns in 'natural host' species. Furthermore, plasma soluble CD14 was not elevated in chronic infection. However, examination of the secondary lymphoid environment revealed persistent changes to the lymphoid structure, including follicular hyperplasia in SIVcpz infected animals. In addition, both SIV and HIV-1 infected chimpanzees showed increased levels of deposition of collagen and increased levels of Mx1 expression in the T-cell zones of the lymph node. The outcome of SIVcpz infection of captive chimpanzees therefore shares features of both non-pathogenic and pathogenic lentivirus infections.


Assuntos
Doenças dos Símios Antropoides/virologia , HIV-1/fisiologia , Infecções por Lentivirus/veterinária , Lentivirus de Primatas/fisiologia , Pan troglodytes , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , Doenças dos Símios Antropoides/imunologia , Doenças dos Símios Antropoides/patologia , Doenças dos Símios Antropoides/fisiopatologia , Doenças Autoimunes/etiologia , Doenças Autoimunes/veterinária , Biomarcadores/sangue , Contagem de Linfócito CD4 , Feminino , HIV-1/imunologia , HIV-1/isolamento & purificação , Hiperplasia , Infecções por Lentivirus/imunologia , Infecções por Lentivirus/fisiopatologia , Infecções por Lentivirus/virologia , Lentivirus de Primatas/imunologia , Lentivirus de Primatas/isolamento & purificação , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Linfonodos/virologia , Masculino , Proteínas de Resistência a Myxovirus/metabolismo , Neopterina/sangue , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/sangue , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/química , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/isolamento & purificação , Trombocitopenia/etiologia , Trombocitopenia/veterinária , Carga Viral , Microglobulina beta-2/sangue
14.
Trends Immunol ; 35(10): 452-3, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25174993

RESUMO

Co-infections may have unpredictable consequences for the health of a host beyond the sum of the individual infections. Two recent papers in Science provide mechanistic insights into how acute helminth infections alter the outcome of Herpesvirus and Norovirus infections by triggering changes in the local cytokine environment.


Assuntos
Infecções por Caliciviridae/imunologia , Coinfecção/imunologia , Gammaherpesvirinae/fisiologia , Gastroenterite/imunologia , Herpesvirus Humano 8/fisiologia , Imunomodulação , Interferon gama/imunologia , Interleucina-4/metabolismo , Lectinas/imunologia , Microbiota/imunologia , Norovirus/imunologia , Fator de Transcrição STAT6/metabolismo , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Trichinella/imunologia , Triquinelose/imunologia , Ativação Viral/fisiologia , beta-N-Acetil-Hexosaminidases/imunologia , Animais , Humanos
16.
J Infect Dis ; 211(6): 947-55, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25234719

RESUMO

Self-amplifying messenger RNA (mRNA) of positive-strand RNA viruses are effective vectors for in situ expression of vaccine antigens and have potential as a new vaccine technology platform well suited for global health applications. The SAM vaccine platform is based on a synthetic, self-amplifying mRNA delivered by a nonviral delivery system. The safety and immunogenicity of an HIV SAM vaccine encoding a clade C envelope glycoprotein formulated with a cationic nanoemulsion (CNE) delivery system was evaluated in rhesus macaques. The HIV SAM vaccine induced potent cellular immune responses that were greater in magnitude than those induced by self-amplifying mRNA packaged in a viral replicon particle (VRP) or by a recombinant HIV envelope protein formulated with MF59 adjuvant, anti-envelope binding (including anti-V1V2), and neutralizing antibody responses that exceeded those induced by the VRP vaccine. These studies provide the first evidence in nonhuman primates that HIV vaccination with a relatively low dose (50 µg) of formulated self-amplifying mRNA is safe and immunogenic.


Assuntos
Vacinas contra a AIDS/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , RNA Viral/imunologia , Vacinas contra a AIDS/administração & dosagem , Imunidade Adaptativa , Animais , Animais não Endogâmicos , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Cátions , Células Cultivadas , Emulsões , Infecções por HIV/imunologia , Imunidade Celular , Macaca mulatta , Masculino , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
17.
J Biol Chem ; 289(43): 29912-26, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25160627

RESUMO

The membrane-proximal external region (MPER) of the human immunodeficiency virus, type 1 (HIV-1) envelope glycoprotein subunit gp41 is targeted by potent broadly neutralizing antibodies 2F5, 4E10, and 10E8. These antibodies recognize linear epitopes and have been suggested to target the fusion intermediate conformation of gp41 that bridges viral and cellular membranes. Anti-MPER antibodies exert different degrees of membrane interaction, which is considered to be the limiting factor for the generation of such antibodies by immunization. Here we characterize a fusion intermediate conformation of gp41 (gp41(int)-Cys) and show that it folds into an elongated ∼ 12-nm-long extended structure based on small angle x-ray scattering data. Gp41(int)-Cys was covalently linked to liposomes via its C-terminal cysteine and used as immunogen. The gp41(int)-Cys proteoliposomes were administered alone or in prime-boost regimen with trimeric envelope gp140(CA018) in guinea pigs and elicited high anti-gp41 IgG titers. The sera interacted with a peptide spanning the MPER region, demonstrated competition with broadly neutralizing antibodies 2F5 and 4E10, and exerted modest lipid binding, indicating the presence of MPER-specific antibodies. Although the neutralization potency generated solely by gp140(CA018) was higher than that induced by gp41(int)-Cys, the majority of animals immunized with gp41(int)-Cys proteoliposomes induced modest breadth and potency in neutralizing tier 1 pseudoviruses and replication-competent simian/human immunodeficiency viruses in the TZM-bl assay as well as responses against tier 2 HIV-1 in the A3R5 neutralization assay. Our data thus demonstrate that liposomal gp41 MPER formulation can induce neutralization activity, and the strategy serves to improve breadth and potency of such antibodies by improved vaccination protocols.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos/imunologia , Feminino , Cobaias , Proteína gp41 do Envelope de HIV/química , Humanos , Soros Imunes/imunologia , Imunização , Imunoglobulina G/imunologia , Dados de Sequência Molecular , Difração de Nêutrons , Estrutura Terciária de Proteína , Proteolipídeos/metabolismo , Proteolipídeos/ultraestrutura , Espalhamento a Baixo Ângulo
18.
J Gen Virol ; 96(Pt 6): 1478-1483, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25667320

RESUMO

The Thai trial (RV144) indicates that a prime-boost vaccine combination that induces both T-cell and antibody responses may be desirable for an effective HIV vaccine. We have previously shown that immunization with synthetic long peptides (SLP), covering the conserved parts of SIV, induced strong CD4 T-cell and antibody responses, but only modest CD8 T-cell responses. To generate a more balanced CD4/CD8 T-cell and antibody response, this study evaluated a pox-vector prime/SLP boost strategy in rhesus macaques. Priming with a replication-competent NYVAC, encoding HIV-1 clade C gag, pol and nef, induced modest IFNγ T-cell immune responses, predominantly directed against HIV-1 Gag. Booster immunization with SLP, covering the conserved parts of HIV-1 Gag, Pol and Env, resulted in a more than 10-fold increase in IFNγ ELISpot responses in four of six animals, which were predominantly HIV-1 Pol-specific. The animals showed a balanced polyfunctional CD4 and CD8 T-cell response and high Ab titres.


Assuntos
Vacinas contra a AIDS/imunologia , Formação de Anticorpos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Anticorpos Anti-HIV/sangue , HIV-1/imunologia , Imunização Secundária/métodos , Vacinas contra a AIDS/administração & dosagem , Animais , Macaca mulatta , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
20.
J Gen Virol ; 95(Pt 2): 413-422, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24225497

RESUMO

Subclinical infection of murine norovirus (MNV) was detected in a mixed breeding group of WT and Stat1(-/-) mice with no outward evidence of morbidity or mortality. Investigations revealed the presence of an attenuated MNV variant that did not cause cytopathic effects in RAW264.7 cells or death in Stat1(-/-) mice. Histopathological analysis of tissues from WT, heterozygous and Stat1(-/-) mice revealed a surprising spectrum of lesions. An infectious molecular clone was derived directly from faeces (MNV-O7) and the sequence analysis confirmed it was a member of norovirus genogroup V. Experimental infection with MNV-O7 induced a subclinical infection with no weight loss in Stat1(-/-) or WT mice, and recapitulated the clinical and pathological picture of the naturally infected colony. Unexpectedly, by day 54 post-infection, 50 % of Stat1(-/-) mice had cleared MNV-O7. In contrast, all WT mice remained infected persistently. Most significantly, this was associated with liver lesions in all the subclinically infected WT mice. These data confirmed that long-term persistence in WT mice is established with specific variants of MNV and that despite a subclinical presentation, active foci of acute inflammation persist within the liver. The data also showed that STAT1-dependent responses are not required to protect mice from lethal infection with all strains of MNV.


Assuntos
Estruturas Animais/patologia , Infecções Assintomáticas , Infecções por Caliciviridae/patologia , Infecções por Caliciviridae/virologia , Norovirus/isolamento & purificação , Animais , Linhagem Celular , Efeito Citopatogênico Viral , Histocitoquímica , Macrófagos/virologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , RNA Viral/química , RNA Viral/genética , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA