Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2212075120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36634137

RESUMO

Liquid methanol has the potential to be the hydrogen energy carrier and storage medium for the future green economy. However, there are still many challenges before zero-emission, affordable molecular H2 can be extracted from methanol with high performance. Here, we present noble-metal-free Cu-WC/W plasmonic nanohybrids which exhibit unsurpassed solar H2 extraction efficiency from pure methanol of 2,176.7 µmol g-1 h-1 at room temperature and normal pressure. Macro-to-micro experiments and simulations unveil that local reaction microenvironments are generated by the coperturbation of WC/W's lattice strain and infrared-plasmonic electric field. It enables spontaneous but selective zero-emission reaction pathways. Such microenvironments are found to be highly cooperative with solar-broadband-plasmon-excited charge carriers flowing from Cu to WC surfaces for efficient stable CH3OH plasmonic reforming with C3-dominated liquid products and 100% selective gaseous H2. Such high efficiency, without any COx emission, can be sustained for over a thousand-hour operation without obvious degradation.

2.
Inorg Chem ; 62(42): 17470-17485, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37820300

RESUMO

Alloyed ultrasmall silver-platinum nanoparticles (molar ratio Ag:Pt = 50:50) were prepared and compared to pure silver, platinum, and gold nanoparticles, all with a metallic core diameter of 2 nm. They were surface-stabilized by a layer of glutathione (GSH). A comprehensive characterization by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), differential centrifugal sedimentation (DCS), and UV spectroscopy showed their size both in the dry and in the water-dispersed state (hydrodynamic diameter). Solution NMR spectroscopy (1H, 13C, COSY, HSQC, HMBC, and DOSY) showed the nature of the glutathione shell including the number of GSH ligands on each nanoparticle (about 200 with a molecular footprint of 0.063 nm2 each). It furthermore showed that there are at least two different positions for the GSH ligand on the gold nanoparticle surface. Platinum strongly reduced the resolution of the NMR spectra compared to silver and gold, also in the alloyed nanoparticles. X-ray photoelectron spectroscopy (XPS) showed that silver, platinum, and silver-platinum particles were at least partially oxidized to Ag(+I) and Pt(+II), whereas the gold nanoparticles showed no sign of oxidation. Platinum and gold nanoparticles were well crystalline but twinned (fcc lattice) despite the small particle size. Silver was crystalline in electron diffraction but not in X-ray diffraction. Alloyed silver-platinum nanoparticles were almost fully amorphous by both methods, indicating a considerable internal disorder.

3.
Angew Chem Int Ed Engl ; 62(12): e202218039, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36656994

RESUMO

The chemical selectivity and faradaic efficiency of high-index Cu facets for the CO2 reduction reaction (CO2 RR) is investigated. More specifically, shape-controlled nanoparticles enclosed by Cu {hk0} facets are fabricated using Cu multilayer deposition at three distinct layer thicknesses on the surface facets of Au truncated ditetragonal nanoprisms (Au DTPs). Au DTPs are shapes enclosed by 12 high-index {310} facets. Facet angle analysis confirms DTP geometry. Elemental mapping analysis shows Cu surface layers are uniformly distributed on the Au {310} facets of the DTPs. The 7 nm Au@Cu DTPs high-index {hk0} facets exhibit a CH4 : CO product ratio of almost 10 : 1 compared to a 1 : 1 ratio for the reference 7 nm Au@Cu nanoparticles (NPs). Operando Fourier transform infrared spectroscopy spectra disclose reactive adsorbed *CO as the main intermediate, whereas CO stripping experiments reveal the high-index facets enhance the *CO formation followed by rapid desorption or hydrogenation.

4.
Inorg Chem ; 61(12): 5133-5147, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35285631

RESUMO

Ultrasmall nanoparticles of platinum group metal oxides (core diameter of about 1.8 nm) were prepared by alkaline hydrolysis of metal precursors in the presence of NaBH4 and by colloidal stabilization with tripeptide glutathione. We obtained water-dispersed nanoparticles of Rh2O3, PdO, RuO2, IrO2, Os/OsO2, and Pt/PtO. Their size was probed using high-resolution transmission electron microscopy, differential centrifugal sedimentation, small-angle X-ray scattering, and diffusion-ordered 1H NMR spectroscopy (1H DOSY). Their oxidation state was clearly determined using X-ray photoelectron spectroscopy, X-ray powder diffraction, and electron diffraction. The chemical composition of the nanoparticles, that is, the ratio of the metal oxide core and glutathione capping agent, was quantitatively determined by a combination of these methods.


Assuntos
Nanopartículas Metálicas , Óxidos , Nanopartículas Metálicas/química , Óxidos/química , Platina/química , Água/química , Difração de Raios X
5.
Angew Chem Int Ed Engl ; 61(36): e202203728, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35802306

RESUMO

We report and analyze a synthetic strategy toward low-Pt platinum-nickel (Pt-Ni) alloy nanoparticle (NP) cathode catalysts for the catalytic electroreduction of molecular oxygen to water. The synthesis involves the pyrolysis and leaching of Ni-organic polymers, subsequent Pt NP deposition, followed by thermal alloying, resulting in single Ni atom site (NiNC)-supported PtNi alloy NPs at low Pt weight loadings of only 3-5 wt %. Despite low Pt weight loading, the catalysts exhibit more favorable Pt-mass activities compared to conventional 20-30 wt % benchmark PtNi catalysts. Using in situ microscopic techniques, we track and unravel the key stages of the PtNi alloy formation process directly at the atomic scale. Surprisingly, we find that carbon-encapsulated metallic Ni@C structures, rather than NiNx sites, act as the Ni source during alloy formation. Our materials concepts offer a pathway to further decrease the overall Pt content in hydrogen fuel cell cathodes.

6.
Chembiochem ; 22(8): 1456-1463, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33275809

RESUMO

The surface of ultrasmall gold nanoparticles with an average diameter of 1.55 nm was conjugated with a 14-3-3 protein-binding peptide derived from CRaf. Each particle carries 18 CRaf peptides, leading to an overall stoichiometry of Au(115)Craf(18). The binding to the protein 14-3-3 was probed by isothermal titration calorimetry (ITC) and fluorescence polarization spectroscopy (FP). The dissociation constant (KD ) was measured as 5.0 µM by ITC and 0.9 µM by FP, which was close to the affinity of dissolved CRaf to 14-3-3σ. In contrast to dissolved CRaf, which alone did not enter HeLa cells, CRAF-conjugated gold nanoparticles were well taken up by HeLa cells, opening the opportunity to target the protein inside a cell.


Assuntos
Proteínas 14-3-3/química , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Células HeLa , Humanos , Tamanho da Partícula , Propriedades de Superfície
7.
Nat Mater ; 19(3): 287-291, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31844277

RESUMO

Core-shell particles with earth-abundant cores represent an effective design strategy for improving the performance of noble metal catalysts, while simultaneously reducing the content of expensive noble metals1-4. However, the structural and catalytic stabilities of these materials often suffer during the harsh conditions encountered in important reactions, such as the oxygen reduction reaction (ORR)3-5. Here, we demonstrate that atomically thin Pt shells stabilize titanium tungsten carbide cores, even at highly oxidizing potentials. In situ, time-resolved experiments showed how the Pt coating protects the normally labile core against oxidation and dissolution, and detailed microscopy studies revealed the dynamics of partially and fully coated core-shell nanoparticles during potential cycling. Particles with complete Pt coverage precisely maintained their core-shell structure and atomic composition during accelerated electrochemical ageing studies consisting of over 10,000 potential cycles. The exceptional durability of fully coated materials highlights the potential of core-shell architectures using earth-abundant transition metal carbide (TMC) and nitride (TMN) cores for future catalytic applications.

8.
Chemistry ; 27(4): 1451-1464, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32959929

RESUMO

Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1 H NMR spectroscopy, 1 H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1 H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.

9.
Microsc Microanal ; : 1-15, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843542

RESUMO

The invention of silicon drift detectors has resulted in an unprecedented improvement in detection efficiency for energy-dispersive X-ray (EDX) spectroscopy in the scanning transmission electron microscope. The result is numerous beautiful atomic-scale maps, which provide insights into the internal structure of a variety of materials. However, the task still remains to understand exactly where the X-ray signal comes from and how accurately it can be quantified. Unfortunately, when crystals are aligned with a low-order zone axis parallel to the incident beam direction, as is necessary for atomic-resolution imaging, the electron beam channels. When the beam becomes localized in this way, the relationship between the concentration of a particular element and its spectroscopic X-ray signal is generally nonlinear. Here, we discuss the combined effect of both spatial integration and sample tilt for ameliorating the effects of channeling and improving the accuracy of EDX quantification. Both simulations and experimental results will be presented for a perovskite-based oxide interface. We examine how the scattering and spreading of the electron beam can lead to erroneous interpretation of interface compositions, and what approaches can be made to improve our understanding of the underlying atomic structure.

10.
Molecules ; 26(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34443657

RESUMO

Two ways to deliver ultrasmall gold nanoparticles and gold-bovine serum albumin (BSA) nanoclusters to the colon were developed. First, oral administration is possible by incorporation into gelatin capsules that were coated with an enteric polymer. These permit the transfer across the stomach whose acidic environment damages many drugs. The enteric coating dissolves due to the neutral pH of the colon and releases the capsule's cargo. Second, rectal administration is possible by incorporation into hard-fat suppositories that melt in the colon and then release the nanocarriers. The feasibility of the two concepts was demonstrated by in-vitro release studies and cell culture studies that showed the easy redispersibility after dissolution of the respective transport system. This clears a pathway for therapeutic applications of drug-loaded nanoparticles to address colon diseases, such as chronic inflammation and cancer.


Assuntos
Colo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas Metálicas/química , Polímeros/farmacologia , Administração Oral , Cápsulas/química , Cápsulas/farmacologia , Gelatina/química , Gelatina/farmacologia , Ouro/química , Ouro/farmacologia , Humanos , Polímeros/química , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacologia , Supositórios/química , Supositórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA