Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nature ; 466(7306): 585-90, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20671702

RESUMO

The quantum Hall effect takes place in a two-dimensional electron gas under a strong magnetic field and involves current flow along the edges of the sample. For some particle-hole conjugate states of the fractional regime (for example, with fillings between 1/2 and 1 of the lowest Landau level), early predictions suggested the presence of counter-propagating edge currents in addition to the expected ones. When this did not agree with the measured conductance, it was suggested that disorder and interactions will lead to counter-propagating modes that carry only energy--the so called neutral modes. In addition, a neutral upstream mode (the Majorana mode) was expected for selected wavefunctions proposed for the even-denominator filling 5/2. Here we report the direct observation of counter-propagating neutral modes for fillings of 2/3, 3/5 and 5/2. The basis of our approach is that, if such modes impinge on a narrow constriction, the neutral quasiparticles will be partly reflected and fragmented into charge carriers, which can be detected through shot noise measurements. We find that the resultant shot noise is proportional to the injected current. Moreover, when we simultaneously inject a charge mode, the presence of the neutral mode was found to significantly affect the Fano factor and the temperature of the backscattered charge mode. In particular, such observations for filling 5/2 may single out the non-Abelian wavefunctions for the state.

2.
Nature ; 452(7189): 829-34, 2008 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-18421345

RESUMO

The fractional quantum Hall effect, where plateaus in the Hall resistance at values of h/nue2 coexist with zeros in the longitudinal resistance, results from electron correlations in two dimensions under a strong magnetic field. (Here h is Planck's constant, nu the filling factor and e the electron charge.) Current flows along the sample edges and is carried by charged excitations (quasiparticles) whose charge is a fraction of the electron charge. Although earlier research concentrated on odd denominator fractional values of nu, the observation of the even denominator nu = 5/2 state sparked much interest. This state is conjectured to be characterized by quasiparticles of charge e/4, whose statistics are 'non-abelian'-in other words, interchanging two quasiparticles may modify the state of the system into a different one, rather than just adding a phase as is the case for fermions or bosons. As such, these quasiparticles may be useful for the construction of a topological quantum computer. Here we report data on shot noise generated by partitioning edge currents in the nu = 5/2 state, consistent with the charge of the quasiparticle being e/4, and inconsistent with other possible values, such as e/2 and e. Although this finding does not prove the non-abelian nature of the nu = 5/2 state, it is the first step towards a full understanding of these new fractional charges.

3.
Nature ; 448(7151): 333-7, 2007 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-17637665

RESUMO

Very much like the ubiquitous quantum interference of a single particle with itself, quantum interference of two independent, but indistinguishable, particles is also possible. For a single particle, the interference is between the amplitudes of the particle's wavefunctions, whereas the interference between two particles is a direct result of quantum exchange statistics. Such interference is observed only in the joint probability of finding the particles in two separated detectors, after they were injected from two spatially separated and independent sources. Experimental realizations of two-particle interferometers have been proposed; in these proposals it was shown that such correlations are a direct signature of quantum entanglement between the spatial degrees of freedom of the two particles ('orbital entanglement'), even though they do not interact with each other. In optics, experiments using indistinguishable pairs of photons encountered difficulties in generating pairs of independent photons and synchronizing their arrival times; thus they have concentrated on detecting bunching of photons (bosons) by coincidence measurements. Similar experiments with electrons are rather scarce. Cross-correlation measurements between partitioned currents, emanating from one source, yielded similar information to that obtained from auto-correlation (shot noise) measurements. The proposal of ref. 3 is an electronic analogue to the historical Hanbury Brown and Twiss experiment with classical light. It is based on the electronic Mach-Zehnder interferometer that uses edge channels in the quantum Hall effect regime. Here we implement such an interferometer. We partitioned two independent and mutually incoherent electron beams into two trajectories, so that the combined four trajectories enclosed an Aharonov-Bohm flux. Although individual currents and their fluctuations (shot noise measured by auto-correlation) were found to be independent of the Aharonov-Bohm flux, the cross-correlation between current fluctuations at two opposite points across the device exhibited strong Aharonov-Bohm oscillations, suggesting orbital entanglement between the two electron beams.

4.
Phys Rev Lett ; 108(4): 046804, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400875

RESUMO

The evolution of the fractional quantum Hall state at filling 5/2 is studied in density tunable two-dimensional electron systems formed in wide wells in which it is possible to induce a transition from single- to two-subband occupancy. In 80 and 60 nm wells, the quantum Hall state at 5/2 filling of the lowest subband is observed even when the second subband is occupied. In a 50 nm well, the 5/2 state vanishes upon second subband population. We attribute this distinct behavior to the width dependence of the capacitive energy for intersubband charge transfer and of the overlap of the subband probability densities.

5.
Phys Rev Lett ; 109(25): 250401, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23368435

RESUMO

Controlled dephasing of electrons, via "which path" detection, involves, in general, coupling a coherent system to a current driven noise source. However, here we present a case in which a nearly isolated electron puddle within a quantum dot, at thermal equilibrium and in millikelvin range temperature, fully dephases the interference in a nearby electronic interferometer. Moreover, the complete dephasing is accompanied by an abrupt π phase slip, which is robust and nearly independent of system parameters. Attributing the robustness of the phenomenon to the Friedel sum rule--which relates a system's occupation to its scattering phases--proves the universality of this powerful rule. The experiment allows us to peek into a nearly isolated quantum dot, which cannot be accessed via conductance measurements.

6.
Phys Rev Lett ; 107(3): 036805, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21838390

RESUMO

Fractionally charged quasiparticles, which obey non-abelian statistics, were predicted to exist in the ν=8/3, ν=5/2, and ν=7/3 fractional quantum Hall states (in the second Landau level). Here we present measurements of charge and neutral modes in these states. For both ν=7/3 and ν=8/3 states, we found a quasiparticle charge e=1/3 and an upstream neutral mode only in ν=8/3-excluding the possibility of non-abelian Read-Rezayi states and supporting Laughlin-like states. The absence of an upstream neutral mode in the ν=7/3 state also proves that edge reconstruction was not present in the ν=7/3 state, suggesting its absence also in ν=5/2 state, and thus may provide further support for the non-abelian anti-pfaffian nature of the ν=5/2 state.

7.
Nature ; 436(7050): 529-33, 2005 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16049482

RESUMO

The measurement of phase in coherent electron systems--that is, 'mesoscopic' systems such as quantum dots--can yield information about fundamental transport properties that is not readily apparent from conductance measurements. Phase measurements on relatively large quantum dots recently revealed that the phase evolution for electrons traversing the dots exhibits a 'universal' behaviour, independent of dot size, shape, and electron occupancy. Specifically, for quantum dots in the Coulomb blockade regime, the transmission phase increases monotonically by pi throughout each conductance peak; in the conductance valleys, the phase returns sharply to its starting value. The expected mesoscopic features in the phase evolution--related to the dot's shape, spin degeneracy or to exchange effects--have not been observed, and there is at present no satisfactory explanation for the observed universality in phase behaviour. Here we report the results of phase measurements on a series of small quantum dots, having occupancies of between only 1-20 electrons, where the phase behaviour for electron transmission should in principle be easier to interpret. In contrast to the universal behaviour observed thus far only in the larger dots, we see clear mesoscopic features in the phase measurements when the dot occupancy is less than approximately 10 electrons. As the occupancy increases, the manner of phase evolution changes and universal behaviour is recovered for some 14 electrons or more. The identification of a transition from the expected mesoscopic behaviour to universal phase evolution should help to direct and constrain theoretical models for the latter.

8.
Phys Rev Lett ; 103(23): 236802, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-20366163

RESUMO

The exact structure of edge modes in "hole conjugate" fractional quantum Hall states remains an unsolved issue despite significant experimental and theoretical efforts devoted to their understanding. Recently, there has been a surge of interest in such studies led by the search for neutral modes, which in some cases may lead to exotic statistical properties of the excitations. In this Letter, we report on detailed measurements of shot noise, produced by partitioning of the more familiar 2/3 state. We find a fractional charge of (2/3)e at the lowest temperature, decreasing to e/3 at an elevated temperature. Surprisingly, strong shot noise had been measured on a clear 1/3 plateau upon partitioning the 2/3 state. This behavior suggests an uncommon picture of the composite edge channels quite different from the accepted one.

9.
Science ; 290(5492): 779-83, 2000 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-11052936

RESUMO

We measured the phase evolution of electrons as they traverse a quantum dot (QD) formed in a two-dimensional electron gas that serves as a localized spin. The traversal phase, determined by embedding the QD in a double path electron interferometer and measuring the quantum interference of the electron wave functions manifested by conductance oscillation as a function of a weak magnetic field, evolved by pi radians, a range twice as large as theoretically predicted. As the correlation weakened, a gradual transition to the familiar phase evolution of a QD was observed. The specific phase evolution observed is highly sensitive to the onset of Kondo correlation, possibly serving as an alternative fingerprint of the Kondo effect.

10.
Andrologia ; 40(5): 273-81, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18811916

RESUMO

The prostate is an androgen-regulated exocrine gland producing over 30% of the noncellular components of the semen and promoting optimal conditions for survival and motility of sperm in the vagina. Benign prostate hyperplasia (BPH) is the most common benign neoplasm in men. Its aetiology is not clear, and therefore, current medical treatments are directed towards the symptoms. Though testosterone is known to be the promoter of prostate cell proliferation, no causal relation between serum testosterone levels and BPH has been found. In this study, we propose a novel and tested pathophysiological mechanism for the evolution of BPH and suggest a tested and effective treatment. We found that in all BPH patients, the one-way valves in the vertically oriented internal spermatic veins are destroyed (clinically manifested as varicocele), causing elevated hydrostatic pressure, some 6-fold greater than normal, in the venous drainage of the male reproductive system. The elevated pressure propagates to all interconnected vessels leading to a unique biological phenomenon: venous blood flows retrograde from the higher pressure in the testicular venous drainage system to the low pressure in the prostatic drainage system directly to the prostate (law of communicating vessels). We have found that free testosterone levels in this blood are markedly elevated, with a concentration of some 130-fold above serum level. Consequently, the prostate is exposed to: (i) increased venous pressure that causes hypertrophy; (ii) elevated concentration of free testosterone causing hyperplasia. We have treated 28 BPH patients using a technique that restores normal pressure in the venous drainage in the male reproductive system. The back-pressure and the back-flow of blood from the testicular to the prostate drainage system were eliminated and, consequently, a rapid reduction in prostate volume and a regression of prostate symptoms took place.


Assuntos
Microcirurgia/métodos , Flebografia/métodos , Hiperplasia Prostática/etiologia , Hiperplasia Prostática/terapia , Escleroterapia/métodos , Varicocele/complicações , Varicocele/terapia , Adulto , Idoso , Pressão Sanguínea/fisiologia , Seguimentos , Humanos , Pressão Hidrostática/efeitos adversos , Masculino , Pessoa de Meia-Idade , Postura/fisiologia , Próstata/irrigação sanguínea , Próstata/fisiopatologia , Próstata/cirurgia , Hiperplasia Prostática/fisiopatologia , Estudos Retrospectivos , Testículo/irrigação sanguínea , Testosterona/sangue , Varicocele/fisiopatologia
11.
Nat Commun ; 6: 7435, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26096516

RESUMO

Electron pairing is a rare phenomenon appearing only in a few unique physical systems; for example, superconductors and Kondo-correlated quantum dots. Here, we report on an unexpected electron pairing in the integer quantum Hall effect regime. The pairing takes place within an interfering edge channel in an electronic Fabry-Perot interferometer at a wide range of bulk filling factors, between 2 and 5. We report on three main observations: high-visibility Aharonov-Bohm conductance oscillations with magnetic flux periodicity equal to half the magnetic flux quantum; an interfering quasiparticle charge equal to twice the elementary electron charge as revealed by quantum shot noise measurements, and full dephasing of the pairs' interference by induced dephasing of the adjacent inner edge channel-a manifestation of inter-channel entanglement. Although this pairing phenomenon clearly results from inter-channel interaction, the exact mechanism that leads to electron-electron attraction within a single edge channel is not clear. We believe that substantial efforts are needed in order to clarify these intriguing and unexpected findings.

12.
Phys Rev Lett ; 85(18): 3918-21, 2000 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-11041960

RESUMO

The charge of quasiparticles in a fractional quantum Hall (FQH) liquid, tunneling through a partly reflecting constriction with transmission t, was determined via shot noise measurements. In the nu = 1/3 FQH state, a charge smoothly evolving from e(*) = e/3 for t(1/3) congruent with 1 to e(*) = e for t(1/3)<<1 was determined, agreeing with chiral Luttinger liquid theory. In the nu = 2/5 FQH state the quasiparticle charge evolves smoothly from e(*) = e/5 at t(2/5) congruent with 1 to a maximum charge less than e(*) = e/3 at t(2/5)<<1. Thus it appears that quasiparticles with an approximate charge e/5 pass a barrier they see as almost opaque.

13.
Science ; 344(6190): 1363-6, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24948731

RESUMO

The quantum eraser is a device that illustrates the quantum principle of complementarity and shows how a dephased system can regain its lost quantum behavior by erasing the "which-path" information already obtained about it. Thus far, quantum erasers were constructed predominantly in optical systems. Here, we present a realization of a quantum eraser in a mesoscopic electronic device. The use of interacting electrons, instead of noninteracting photons, allows control over the extracted information and a smooth variation of the degree of quantum erasure. The demonstrated system can serve as a first step toward a variety of more complex setups.

14.
Nat Commun ; 3: 1289, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23250419

RESUMO

Upstream neutral modes, counter propagating to charge modes and carrying energy without net charge, had been predicted to exist in some of the fractional quantum Hall states and were recently observed via noise measurements. Understanding such modes will assist in identifying the wavefunction of these states, as well as shedding light on the role of Coulomb interactions within edge modes. Here, operating mainly in the ν=2/3 state, we place a quantum dot a few micrometres upstream of an ohmic contact, which serves as a 'neutral modes source'. We show that the neutral modes heat the input of the dot, causing a net thermo-electric current to flow through it. Heating of the electrons leads to a decay of the neutral mode, manifested in the vanishing of the thermo-electric current at T>110 mK. This set-up provides a straightforward method to investigate upstream neutral modes without turning to the more cumbersome noise measurements.

15.
Phys Rev Lett ; 62(9): 1057-1060, 1989 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-10040413
16.
Phys Rev Lett ; 63(9): 992-995, 1989 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-10041241
17.
Phys Rev Lett ; 55(20): 2200-2203, 1985 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-10032074
18.
Phys Rev Lett ; 60(9): 828-831, 1988 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-10038663
19.
Phys Rev Lett ; 74(20): 4047-4050, 1995 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10058399
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA