RESUMO
AIMS/HYPOTHESIS: All forms of diabetes result from insufficient functional beta cell mass. Due to the relatively limited expression of several antioxidant enzymes, beta cells are highly vulnerable to pathological levels of reactive oxygen species (ROS), which can lead to the reduction of functional beta cell mass. During early postnatal ages, both human and rodent beta cells go through a burst of proliferation that quickly declines with age. The exact mechanisms that account for neonatal beta cell proliferation are understudied but mitochondrial release of moderated ROS levels has been suggested as one of the main drivers. We previously showed that, apart from its conventional role in protecting beta cells from oxidative stress, the nuclear factor erythroid 2-related factor 2 (NRF2) is also essential for beta cell proliferation. We therefore hypothesised that NRF2, which is activated by ROS, plays an essential role in beta cell proliferation at early postnatal ages. METHODS: Beta cell NRF2 levels and beta cell proliferation were measured in pancreatic sections from non-diabetic human cadaveric donors at different postnatal ages, childhood and adulthood. Pancreatic sections from 1-, 7-, 14- and 28-day-old beta cell-specific Nrf2 (also known as Nfe2l2)-knockout mice (ßNrf2KO) or control (Nrf2lox/lox) mice were assessed for beta cell NRF2 levels, beta cell proliferation, beta cell oxidative stress, beta cell death, nuclear beta cell pancreatic duodenal homeobox protein 1 (PDX1) levels and beta cell mass. Seven-day-old ßNrf2KO and Nrf2lox/lox mice were injected daily with N-acetylcysteine (NAC) or saline (154 mmol/l NaCl) to explore the potential contribution of oxidative stress to the phenotypes seen in ßNrf2KO mice at early postnatal ages. RNA-seq was performed on 7-day-old ßNrf2KO and Nrf2lox/lox mice to investigate the mechanisms by which NRF2 stimulates beta cell proliferation at early postnatal ages. Mitochondrial biogenesis and function were determined using dispersed islets from 7-day-old ßNrf2KO and Nrf2lox/lox mice by measuring MitoTracker intensity, mtDNA/gDNA ratio and ATP/ADP ratio. To study the effect of neonatal beta cell-specific Nrf2 deletion on glucose homeostasis in adulthood, blood glucose, plasma insulin and insulin secretion were determined and a GTT was performed on 3-month-old ßNrf2KO and Nrf2lox/lox mice fed on regular diet (RD) or high-fat diet (HFD). RESULTS: The expression of the master antioxidant regulator NRF2 was increased at early postnatal ages in both human (1 day to 19 months old, 31%) and mouse (7 days old, 57%) beta cells, and gradually declined with age (8% in adult humans, 3.77% in adult mice). A significant correlation (R2=0.568; p=0.001) was found between beta cell proliferation and NRF2 levels in human beta cells. Seven-day-old ßNrf2KO mice showed reduced beta cell proliferation (by 65%), beta cell nuclear PDX1 levels (by 23%) and beta cell mass (by 67%), and increased beta cell oxidative stress (threefold) and beta cell death compared with Nrf2lox/lox control mice. NAC injections increased beta cell proliferation in 7-day-old ßNrf2KO mice (3.4-fold) compared with saline-injected ßNrf2KO mice. Interestingly, RNA-seq of islets isolated from 7-day-old ßNrf2KO mice revealed reduced expression of mitochondrial RNA genes and genes involved in the electron transport chain. Islets isolated from 7-day old ßNrf2KO mice presented reduced MitoTracker intensity (by 47%), mtDNA/gDNA ratio (by 75%) and ATP/ADP ratio (by 68%) compared with islets from Nrf2lox/lox littermates. Lastly, HFD-fed 3-month-old ßNrf2KO male mice displayed a significant reduction in beta cell mass (by 35%), a mild increase in non-fasting blood glucose (1.2-fold), decreased plasma insulin (by 14%), and reduced glucose tolerance (1.3-fold) compared with HFD-fed Nrf2lox/lox mice. CONCLUSIONS/INTERPRETATION: Our study highlights NRF2 as an essential transcription factor for maintaining neonatal redox balance, mitochondrial biogenesis and function and beta cell growth, and for preserving functional beta cell mass in adulthood under metabolic stress. DATA AVAILABILITY: Sequencing data are available in the NCBI Gene Expression Omnibus, accession number GSE242718 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE242718 ).
Assuntos
Células Secretoras de Insulina , Insulinas , Masculino , Humanos , Camundongos , Animais , Criança , Recém-Nascido , Lactente , Glicemia/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Animais Recém-Nascidos , Biogênese de Organelas , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo , Oxirredução , DNA Mitocondrial/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
The late stages of the mammalian pregnancy are accompanied with increased insulin resistance due to the increased glucose demand of the growing fetus. Therefore, as a compensatory response to maintain the maternal normal blood glucose levels, maternal beta-cell mass expands leading to increased insulin release. Defects in beta-cell adaptive expansion during pregnancy can lead to gestational diabetes mellitus (GDM). Although the exact mechanisms that promote GDM are poorly understood, GDM strongly associates with impaired beta-cell proliferation and with increased levels of reactive oxygen species (ROS). Here, we show that NRF2 levels are upregulated in mouse beta-cells at gestation day 15 (GD15) concomitant with increased beta-cell proliferation. Importantly, mice with tamoxifen-induced beta-cell-specific NRF2 deletion display inhibition of beta-cell proliferation, increased beta-cell oxidative stress and elevated levels of beta-cell death at GD15. This results in attenuated beta-cell mass expansion and disturbed glucose homeostasis towards the end of pregnancy. Collectively, these results highlight the importance of NRF2-oxidative stress regulation in beta-cell mass adaptation to pregnancy and suggest NRF2 as a potential therapeutic target for treating GDM.