Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(19): 34385-34395, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242451

RESUMO

Recording of transient absorption microscopy images requires fast detection of minute optical density changes, which is typically achieved with high-repetition-rate laser sources and lock-in detection. Here, we present a highly flexible and cost-efficient detection scheme based on a conventional photodiode and an USB oscilloscope with MHz bandwidth, that deviates from the commonly used lock-in setup and achieves benchmark sensitivity. Our scheme combines shot-to-shot evaluation of pump-probe and probe-only measurements, a home-built photodetector circuit optimized for low pulse energies applying low-pass amplification, and a custom evaluation algorithm based on Fourier transformation. Advantages of this approach include abilities to simultaneously monitor multiple pulse modulation frequencies, implement the detection of additional pulse sequences (e.g., pump-only), and expand to multiple parallel detection channels for wavelength-dispersive probing. With a 40 kHz repetition-rate laser system powering two non-collinear optical parametric amplifiers for wide tuneability, we find that laser pulse fluctuations limit the sensitivity of the setup, while the detection scheme has negligible contribution. We demonstrate the 2-D imaging performance of our transient absorption microscope with studies on micro-crystalline molecular thin films.

2.
Phys Rev Lett ; 124(11): 115301, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242724

RESUMO

Much of our knowledge about dynamics and functionality of molecular systems has been achieved with femtosecond time-resolved spectroscopy. Despite extensive technical developments over the past decades, some classes of systems have eluded dynamical studies so far. Here, we demonstrate that superfluid helium nanodroplets, acting as a thermal bath of 0.4 K temperature to stabilize weakly bound or reactive systems, are well suited for time-resolved studies of single molecules solvated in the droplet interior. By observing vibrational wave packet motion of indium dimers (In_{2}) for tens of picoseconds, we demonstrate that the perturbation imposed by this quantum liquid can be lower by a factor of 10-100 compared to any other solvent, which uniquely allows us to study processes depending on long nuclear coherence in a dissipative environment. Furthermore, tailor-made microsolvation environments inside droplets will enable us to investigate the solvent influence on intramolecular dynamics in a wide tuning range from molecular isolation to strong molecule-solvent coupling.

3.
J Chem Phys ; 152(1): 014307, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914752

RESUMO

Helium nanodroplets can serve as reaction containers for photoinduced time-resolved studies of cold, isolated molecular systems that are otherwise inaccessible. Recently, three different dynamical processes, triggered by photoexcitation of a single atom inside a droplet, were observed in their natural time scale: Expansion of the He solvation shell (He bubble) within 600 fs initiates a collective bubble oscillation with a ∼30 ps oscillation period, followed by dopant ejection after ∼60 ps. Here, we present a systematic investigation of these processes by combining time-resolved photoelectron and photoion spectroscopy with time-dependent He density functional theory simulations. By variation of the photoexcitation energy, we find that the full excess excitation energy, represented by the blue-shifted in-droplet excitation band, is completely transferred to the He environment during the bubble expansion. Surprisingly, we find that variation of the droplet size has only a minor influence on the ejection time, providing insight into the spatial distribution of the ground-state atoms before photoexcitation. Simulated particle trajectories after photoexcitation are in agreement with experimental observations and suggest that the majority of ground-state atoms are located at around 16 Šbelow the droplet surface. Bubble expansion and oscillation are purely local effects, depending only on the ultimate dopant environment. These solvation-induced dynamics will be superimposed on intramolecular dynamics of molecular systems, and a mechanistic description is fundamental for the interpretation of future experiments.

4.
J Phys Chem A ; 123(18): 3977-3984, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-30973728

RESUMO

The 0.4 K internal temperature of superfluid helium nanodroplets is believed to guarantee a corresponding ground-state population of dopant atoms and molecules inside this cryogenic matrix. We have recorded 6s ← 5p excitation spectra of indium atoms in helium droplets and found two absorption bands separated by about 2000 cm-1, a value close to the spin-orbit (SO) splitting of the In 2P ground state. The intensities of the bands agree with a thermal population of the 2P1/2 and 2P3/2 states at 870 K, the temperature of the In pick-up cell. Applying femtosecond pump-probe spectroscopy, we found the same dynamical response of the helium solvation shell after the photoexcitation of the two bands. He-density functional theory simulations of the excitation spectra are in agreement with the bimodal structure. Our findings show that the population of SO levels of hot dopants is conserved after pick-up inside the superfluid droplet. Implications for the interpretation of experiments on molecular aggregates are discussed.

5.
Entropy (Basel) ; 21(1)2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33266809

RESUMO

This paper employs Bayesian probability theory for analyzing data generated in femtosecond pump-probe photoelectron-photoion coincidence (PEPICO) experiments. These experiments allow investigating ultrafast dynamical processes in photoexcited molecules. Bayesian probability theory is consistently applied to data analysis problems occurring in these types of experiments such as background subtraction and false coincidences. We previously demonstrated that the Bayesian formalism has many advantages, amongst which are compensation of false coincidences, no overestimation of pump-only contributions, significantly increased signal-to-noise ratio, and applicability to any experimental situation and noise statistics. Most importantly, by accounting for false coincidences, our approach allows running experiments at higher ionization rates, resulting in an appreciable reduction of data acquisition times. In addition to our previous paper, we include fluctuating laser intensities, of which the straightforward implementation highlights yet another advantage of the Bayesian formalism. Our method is thoroughly scrutinized by challenging mock data, where we find a minor impact of laser fluctuations on false coincidences, yet a noteworthy influence on background subtraction. We apply our algorithm to data obtained in experiments and discuss the impact of laser fluctuations on the data analysis.

6.
J Phys Chem A ; 121(34): 6398-6404, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28737942

RESUMO

The electronic structure of excited states of acetone is represented by a Rydberg manifold that is coupled to valence states which provide very fast and efficient relaxation pathways. We observe and characterize the transfer of population from photoexcited Rydberg states (6p, 6d, 7s) to a whole series of lower Rydberg states (3p to 4d) and a simultaneous decay of population from these states. We obtain these results with time-resolved photoelectron-photoion coincidence (PEPICO) detection in combination with the application of Bayesian statistics for data analysis. Despite the expectedly complex relaxation behavior, we find that a simple sequential decay model is able to describe the observed PEPICO transients satisfactorily. We obtain a slower decay (∼320 fs) from photoexcited states compared to a faster decay (∼100 fs) of states that are populated by internal conversion, demonstrating that different relaxation dynamics are active. Within the series of Rydberg states populated by internal conversion, the decay dynamics seem to be similar, and a trend of slower decay from lower states indicates an increasingly higher energy barrier along the decay pathway for lower states. The presented results agree all in all with previous relaxation studies within the Rydberg manifold. The state-resolved observation of transient population ranging from 3p to 4d can serve as reference for time-dependent simulations.

7.
J Phys Chem A ; 120(32): 6418-23, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27459051

RESUMO

For the investigation of photoinduced dynamics in molecules with time-resolved pump-probe photoionization spectroscopy, it is essential to obtain unequivocal information about the fragmentation behavior induced by the laser pulses. We present time-resolved photoelectron-photoion coincidence (PEPICO) experiments to investigate the excited-state dynamics of isolated acetone molecules triggered by two-photon (269 nm) excitation. In the complex situation of different relaxation pathways, we unambiguously identify three distinct pump-probe ionization channels. The high selectivity of PEPICO detection allows us to observe the fragmentation behavior and to follow the time evolution of each channel separately. For channels leading to fragment ions, we quantitatively obtain the fragment-to-parent branching ratio and are able to determine experimentally whether dissociation occurs in the neutral molecule or in the parent ion. These results highlight the importance of coincidence detection for the interpretation of time-resolved photochemical relaxation and dissociation studies if multiple pathways are present.

8.
Nat Commun ; 12(1): 4204, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244517

RESUMO

Laser-assisted electron scattering (LAES), a light-matter interaction process that facilitates energy transfer between strong light fields and free electrons, has so far been observed only in gas phase. Here we report on the observation of LAES at condensed phase particle densities, for which we create nano-structured systems consisting of a single atom or molecule surrounded by a superfluid He shell of variable thickness (32-340 Å). We observe that free electrons, generated by femtosecond strong-field ionization of the core particle, can gain several tens of photon energies due to multiple LAES processes within the liquid He shell. Supported by Monte Carlo 3D LAES and elastic scattering simulations, these results provide the first insight into the interplay of LAES energy gain/loss and dissipative electron movement in a liquid. Condensed-phase LAES creates new possibilities for space-time studies of solids and for real-time tracing of free electrons in liquids.

9.
J Phys Chem Lett ; 11(4): 1443-1449, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31918552

RESUMO

The response of a molecule to photoexcitation is governed by the coupling of its electronic states. However, if the energetic spacing between the electronically excited states at the Franck-Condon window becomes sufficiently small, it is infeasible to selectively excite and monitor individual states with conventional time-resolved spectroscopy, preventing insight into the energy transfer and relaxation dynamics of the molecule. Here, we demonstrate how the combination of time-resolved spectroscopy and extensive surface hopping dynamics simulations with a global fit approach on individually excited ensembles overcomes this limitation and resolves the dynamics in the n3p Rydberg states in acetone. Photoelectron transients of the three closely spaced states n3px, n3py, and n3pz are used to validate the theoretical results, which in turn allow retrieving a comprehensive kinetic model describing the mutual interactions of these states for the first time.

10.
Nat Commun ; 9(1): 4006, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275442

RESUMO

The observation of chemical reactions on the time scale of the motion of electrons and nuclei has been made possible by lasers with ever shortened pulse lengths. Superfluid helium represents a special solvent that permits the synthesis of novel classes of molecules that have eluded dynamical studies so far. However, photoexcitation inside this quantum solvent triggers a pronounced response of the solvation shell, which is not well understood. Here, we present a mechanistic description of the solvent response to photoexcitation of indium (In) dopant atoms inside helium nanodroplets (HeN), obtained from femtosecond pump-probe spectroscopy and time-dependent density functional theory simulations. For the In-HeN system, part of the excited state electronic energy leads to expansion of the solvation shell within 600 fs, initiating a collective shell oscillation with a period of about 30 ps. These coupled electronic and nuclear dynamics will be superimposed on intrinsic photoinduced processes of molecular systems inside helium droplets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA