RESUMO
SUMMARY: Proteins frequently function as parts of complexes, assemblages of multiple proteins and other biomolecules, yet network visualizations usually only show proteins as parts of binary interactions. ComplexViewer visualizes interactions with more than two participants and thereby avoids the need to first expand these into multiple binary interactions. Furthermore, if binding regions between molecules are known then these can be displayed in the context of the larger complex. AVAILABILITY AND IMPLEMENTATION: freely available under Apache version 2 license; EMBL-EBI Complex Portal: http://www.ebi.ac.uk/complexportal; Source code: https://github.com/MICommunity/ComplexViewer; Package: https://www.npmjs.com/package/complexviewer; http://biojs.io/d/complexviewer. Language: JavaScript; Web technology: Scalable Vector Graphics; Libraries: D3.js. CONTACT: colin.combe@ed.ac.uk or juri.rappsilber@ed.ac.uk.
Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Software , Substâncias Macromoleculares/metabolismo , Ligação ProteicaRESUMO
InterMine (www.intermine.org) is a biological data warehousing system providing extensive automatically generated and configurable RESTful web services that underpin the web interface and can be re-used in many other applications: to find and filter data; export it in a flexible and structured way; to upload, use, manipulate and analyze lists; to provide services for flexible retrieval of sequence segments, and for other statistical and analysis tools. Here we describe these features and discuss how they can be used separately or in combinations to support integrative and comparative analysis.
Assuntos
Bases de Dados Factuais , Software , Animais , Cromossomos/química , Humanos , Internet , Camundongos , Análise de Sequência de DNA , Interface Usuário-ComputadorRESUMO
InterMine is a data integration warehouse and analysis software system developed for large and complex biological data sets. Designed for integrative analysis, it can be accessed through a user-friendly web interface. For bioinformaticians, extensive web services as well as programming interfaces for most common scripting languages support access to all features. The web interface includes a useful identifier look-up system, and both simple and sophisticated search options. Interactive results tables enable exploration, and data can be filtered, summarized, and browsed. A set of graphical analysis tools provide a rich environment for data exploration including statistical enrichment of sets of genes or other entities. InterMine databases have been developed for the major model organisms, budding yeast, nematode worm, fruit fly, zebrafish, mouse, and rat together with a newly developed human database. Here, we describe how this has facilitated interoperation and development of cross-organism analysis tools and reports. InterMine as a data exploration and analysis tool is also described. All the InterMine-based systems described in this article are resources freely available to the scientific community.
Assuntos
Bases de Dados Factuais , Software , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica , Humanos , Internet , Integração de Sistemas , Interface Usuário-ComputadorRESUMO
HumanMine (www.humanmine.org) is an integrated database of human genomics and proteomics data that provides a powerful interface to support sophisticated exploration and analysis of data compiled from experimental, computational and curated data sources. Built using the InterMine data integration platform, HumanMine includes genes, proteins, pathways, expression levels, Single nucleotide polymorphism (SNP), diseases and more, integrated into a single searchable database. HumanMine promotes integrative analysis, a powerful approach in modern biology that allows many sources of evidence to be analysed together. The data can be accessed through a user-friendly web interface as well as a powerful, scriptable web service Application programming interface (API) to allow programmatic access to data. The web interface includes a useful identifier resolution system, sophisticated query options and interactive results tables that enable powerful exploration of data, including data summaries, filtering, browsing and export. A set of graphical analysis tools provide a rich environment for data exploration including statistical enrichment of sets of genes or other biological entities. HumanMine can be used for integrative multistaged analysis that can lead to new insights and uncover previously unknown relationships. Database URL: https://www.humanmine.org.
Assuntos
Genoma Humano , Armazenamento e Recuperação da Informação , Bases de Dados Factuais , Humanos , ProteômicaRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0106035.].
RESUMO
The construction and analysis of networks is increasingly widespread in biological research. We have developed esyN ("easy networks") as a free and open source tool to facilitate the exchange of biological network models between researchers. esyN acts as a searchable database of user-created networks from any field. We have developed a simple companion web tool that enables users to view and edit networks using data from publicly available databases. Both normal interaction networks (graphs) and Petri nets can be created. In addition to its basic tools, esyN contains a number of logical templates that can be used to create models more easily. The ability to use previously published models as building blocks makes esyN a powerful tool for the construction of models and network graphs. Users are able to save their own projects online and share them either publicly or with a list of collaborators. The latter can be given the ability to edit the network themselves, allowing online collaboration on network construction. esyN is designed to facilitate unrestricted exchange of this increasingly important type of biological information. Ultimately, the aim of esyN is to bring the advantages of Open Source software development to the construction of biological networks.